
PRADIS
WRITING PLUGIN-OBJECTS IN THE LANGUAGE FORTRAN

PROGRAM SET FOR THE AUTOMATION OF THE SIMULATION 
OF  NONSTATIONARY  PROCESSES  IN  THE  MECHANICAL 
SYSTEMS AND THE SYSTEMS OF OTHER PHYSICAL NATURE 

VERSION 4.3



Content

 Content                                                                                                                                                    ................................................................................................................................................  2  
1. Description of technology.                                                                                                                   ...............................................................................................................  3  

1.1purposes.......................................................................................................................................3
1.2load of [repozitarija].................................................................................................................... 3
1.3initialization of plugin................................................................................................................. 3
1.4use of plugin with the calculation................................................................................................3

2. [Repozitarij] of plugin.                                                                                                                         .....................................................................................................................  4  
2.1size of [repozitarija].....................................................................................................................4
2.2tree of [repozitarija].....................................................................................................................4
2.3selection of the units of the tree “of plugin”................................................................................5
2.4selection of the units of the tree “of model”................................................................................5
2.5selection of the units of the tree “of pgo”....................................................................................7
2.6selection of the units of the tree “of prvp”.................................................................................. 7
2.7addition of new properties and types of components.................................................................. 8

 e.               Changes in solver in the implementation technology.                                                                     .................................................................  9  
3.1 global functions of working [repozitarija]..................................................................................9
3.2 connection of [repozitarija] of plugin into the solver.................................................................9

 4 interfaces of plugin.                                                                                                                            ........................................................................................................................  10  
4.1 standardized calls of plugin.                                                                                                             .........................................................................................................  10  

4.2agreements about the calls and decoration................................................................................ 10
4.3arguments of the call of initialization........................................................................................10
4.4arguments of the call of the model of element.......................................................................... 11
4.5arguments of call [PGO]............................................................................................................11
4.6arguments of call [PRVP]..........................................................................................................13

5 the addition of plugin to assembling of [reshatelja].                                                                           .......................................................................  14  

2



1. Description of technology.

1.1 purposes.
The  technology  of  dynamic  incorporation  into  the  solver PRADIS is  developed  for  the 
possibility to add the new models of elements, [PGO], [PRVP] without a change in the existing 
code of [reshatelja], and without its recompilation.

1.2 load of [repozitarija].
Prior to the start of calculation the solver loads the configurative file ([repozitarij]), in which is 
described the collection of the built in dynamic libraries (plugin), and component (models of 
elements,  [PGO],  [PRVP]),  which  in  them are  realized.  Further  for  the  models,  [PGO] and 
[PRVP] are built the tables of the correspondence of numerical identifiers (from armcltg), and 
the structures, which describe components. The most important member in each structure of – 
the address of the global procedure, which realizes component (model of element, [PGO] or 
[PRVP]). Before the construction of the tables of the correspondence to identifiers all dynamic 
libraries load into the address space of the process of [reshatelja]. Further, during reading from 
[repozitarija]  of  identifier  and  name  of  the  function  of  component,  the  address  of  the 
corresponding function searches for in the module of the loaded library, and it is recorded in 
necessary type table (model/[PGO]/[PRVP]), with its identifier.

1.3 initialization of plugin.
Besides the procedures, which realize components, each dynamic library of plugin is obligated 

to contain the function of initialization. In it before the calculation the solver will transmit the 
addresses of the terms of its common of the regions (not determined, NOTAT, GRCONF), which 
can be required by components in the course of computation. The function of initialization must 
preserve the transmitted addresses in the global variables, which will be accessible to function- 
components.

1.4 use of plugin with the calculation.
When resolving before the turning to the model of element, [PGO], or [PRVP] is carried out the 
search in the appropriate table of the loaded components on the identifier. If the corresponding to 
identifier component is found – it is caused it, if is not found – it is done the attempt to cause the 
component, turning to which is rigidly coded in the solver.

3



2. [Repozitarij] of plugin.

2.1 size of [repozitarija].
After the installation PRADIS of [repozitarij] of  plugin it must be located in the file % OF 
DINSYS % \ of dinama \ of sysarm \ of plugin_repository.xml. The size of file is simplified 
XML. In the beginning file compulsorily must be present TEG <?xml of version= " 1.0 "?>, then 
one root TEG of <root></of root>. In it can be found the arbitrary collection of the subtrees 
XML of  TEG. From them are analyzed only the subtrees  with upper TEG “of  plugin” (see 
below). The remaining subtrees of TEG can be arbitrary, size does not set on them limitations. 
The code of working [repozitarija] is contained in the file of pradis \ of src \ of pradis32 \ of 
pradis \ of solver \ of itgdll \ of plugin_repository.cpp.

2.2 tree of [repozitarija].
The principle of working [repozitarija] is the following. Entire xml file is read into the tree of the 
assemblies, which correspond to TEG. Tree is represented by the template of ctm::cxx::Tree, 
determined into pradis \ of include \ of ctmstd \ of cxx_tree.h. As the unit of tree is used the 
structure of ctm::pradis::plugin::Node, determined into plugin_repository.cpp. Unit stores line 
name, and also doubly connected list of the values of the simple types: char, unsigned of char, 
bool, short, unsigned  of  short, long, unsigned  of  long, int, unsigned of  int, float, double, 
std::string. If in XML is encountered any TEG with exception of one of the special (see below), 
to the current unit of tree daughterly unit with the same name as met TEG, is added. Attributes 
and  text  of  TEG are  ignored.  All  daughterly XML TEG  will  be  added  to  the  tree  as  the 
daughterly units of already this added unit. If special TEG is encountered, then to the current unit 
of tree is added not daughterly unit, but sequential value (interpretation of the text of TEG), in 
accordance with the table:
<c></c> char,
<uc></of uc> of unsigned of char,
<b></b> bool,
<h></h> short,
<uh></of uh> of unsigned of short,
<l></l> long,
<ul></of ul> of unsigned of long,
<i></i> int,
<ui></of ui> of unsigned of int,
<f></f> float,
<d></d> double,
<s></s> std::string.
To add value into the unit is possible pattern method of ctm::pradis::plugin::Node::push_value (). 
After unit is formed it is possible to sort out its values with the aid of [iteratorov] of list, of ctm 
returned::pradis::plugin::Node::begin () and ctm::pradis::plugin::Node::end (). To determine the 
type  of  value  according  to  [iteratoru]  is  possible  with  the  aid  of 
ctm::pradis::plugin::Node::get_tag (), and to obtain value on [iteratoru] - with the aid of pattern 
method of ctm::pradis::plugin::Node::get_value ().
Thus, on the basis of [repozitarija] to be built the tree of assemblies with the names of TEG, and 
by  the  massifs  of  the  values  of  the  simple  types,  obtained  from  special  [podtegov].  The 
construction  of  tree  achieves  a  method of  ctm::pradis::plugin::Repository::LoadTree  ()  from 
plugin_repository.cpp. Class of ctm::pradis::plugin::Repository represents in solver [repozitarij] 
of plugin, and its public method Of load () carries out entire load of [repozitarija] (together with 
the construction of the tables of components), from the input flow to XML.

4



2.3 selection of the units of the tree “of plugin”.
After the construction of tree, the method of ctm::pradis::plugin::Repository::Load () sorts out 
the units of the tree of the first level after root. From them are analyzed the units with the name 
“of plugin”, each of which it represents one dynamically loaded library. The remaining units of 
the first level are ignored. In each unit “of plugin” must be located one unit “of library”, the first 
value in which must be the line (TEG of <s></s>) of – the name of the dynamic library of 
plugin, which must be located in % DINSYS % \ of dinama \ of pradis32. In addition to this, in 
each  unit  “of  plugin”,  can be  present  one  subassembly “of  init”  even  one subassembly  “of 
cleanup”. The first values of these units must be the lines of – the names of the functions of the 
initialization of dynamic library (in the unit “init”) before the calculation, and its cleaning (in the 
unit  “of cleanup”),  after  the end of calculation.  If  these units be present,  functions with the 
appropriate names compulsorily must be exported by the dynamic library of plugin. The function 
of initialization compulsorily must be present in the library of plugin. If the unit “of init” there 
are no – it is considered that the function of initialization is called “INIT”. On the arguments of 
the function of initialization see below. Of functions against cleanings it can not be in the library. 
If there is no unit “of cleanup” - it is considered that there is no function, and it is not caused. 
The function of cleaning does not have arguments. Besides the units “of library”, “init” and” 
cleanup ", in the unit “of plugin” can be contained a arbitrary quantity of units “of model”, “pgo” 
or “prvp”, (describes the components, realized into plugin to library), and also any other units, 
which are not analyzed with the selection of the tree, built from XML of [repozitarija].
Example XML for describing plugin:
<plugin>

 <library><s>balka</s></of library>
 <init><s>INIT</s></of init>
 <cleanup><s>CLEAN</s></of cleanup>
 <model>
 ...........
 </model>
 ...........
 <pgo>
 ...........
 </pgo>
 ...........
 <prvp>

</plugin>
The code of the selection of the units of the tree “of plugin” is contained in the method of 
ctm::pradis::plugin::Repository::ProcessPlugin (). In this method is carried out the circuit of the 
subassemblies of the unit “of plugin” and the call of processors for the subassemblies of the type 
“model”,” pgo ", “prvp”. To if necessary add one additional type of plugin of component, this 
method is simple to enlarge.

2.4 selection of the units of the tree “of model”.
The code of the selection of the units of the tree “of plugin”/” of model " is contained in the 
method of  ctm::pradis::plugin::Repository::ProcessModel ().  In  it  the  subassemblies  of  the 
following types are analyzed:

• “id”, compulsorily must be present,  and contain as the first  value of unsigned of int 
(XML TEG of <ui></of ui>) of – the identifier of model, corresponding armctlg.

5



• “procedure”, compulsorily must be present, and contain as the first value of std::string 
(XML TEG of <s></s>) – the name of the procedure of the model of element. On the 
parameters of the procedure of the model of element see below.

• “parameters”, compulsorily must be present. Can contain on one unit of the type “ext”, 
“ent”, “adr”, “ign”. The units of other types can be contained into “parameters”, but they 
are not analyzed. If it is present, each of the units “of ext”, “ent”, “adr” or “ign” must 
contain one value of int (XML TEG of <i></i>). These values make the same sense as 
the  analogous  parameters  of  the  passport  of  the  model  of  element,  and  they  must 
coincide with the values of the passport of this model into armctlg. If any of the values is 
absent, it starts that it is equal to value on silence, according to the same rules, on which 
are advanced the values on silence in the passport of the model of element during the 
addition to armctlg.

• “aliases”,  compulsorily  must  be  present  and  contain  0  or  more  than  the  values of 
std::string (XML TEG of <s></s>) – of alternative names for the procedure of the model 
of element, for the future use in the translator.

• “classes”, if it is present, can contain 0 or more than subassemblies of the type “system” 
(physical system). The units of other types can be contained into “classes”, but they are 
not analyzed. Each of the units “of system” can contain one unit “of name” (name of 
physical system) and “defaultPGO” ([PGO] on silence for this physical system). The 
units of other types can be contained in the units “of system”, but they are not analyzed. 
From the units “of name” and “defaultPGO” are extracted and are memorized the first 
line values, for the future use in the translator.

• “nodes”, if it is present, can contain 0 or more than the subassemblies “of node”. The 
units of other types can be contained into “nodes”, but they are not analyzed. In each unit 
of the type “node” is analyzed one unit of the type “system” (name of physical system 
for the unit with the number, which corresponds to the ordinal number of the unit “of 
node” in the unit “of nodes”). If the unit “of system” is present, the first line value is 
extracted from it, and it is memorized, for the future use in the translator.

Example XML for describing model:
<model>

 <id><ui>75</ui></of id>
 <procedure><s>MODEL</s></of procedure>
 <parameters>

 <ext><i>6</i></of ext>
 <ent><i>0</i></of ent>
 <adr><i>1</i></of adr>
 <ign><i>2</i></of ign>

 </parameters>
 <aliases>

 <s>BALKA</s>
 <s>balka</s>

 </aliases>
 <classes>

 <system>
 <name><s>mechanics</s></of name>
 <defaultPGO><s>PGO1</s></of defaultPGO>

 </system>
 <system>

 <name><s>hydraulics</s></of name>
 <defaultPGO><s>PGO2</s></of defaultPGO>

 </system>
 </classes>

6



 <nodes>
 <node>

 <system><s>mechanics</s></of system>
 </node>
 <node>

 <system><s>hydraulics</s></of system>
 </node>

 </nodes>
</model>
Any other units can be contained in the tree, but they are not analyzed. To if necessary add one 
additional  characteristic  of  the  model  of  element,  the  method of 
ctm::pradis::plugin::Repository::ProcessModel () is simple to enlarge.

2.5 selection of the units of the tree “of pgo”.
The code of the selection of the units of the tree “of plugin”/” of pgo " is contained in the method 
of ctm::pradis::plugin::Repository::ProcessPGO (). In it the subassemblies of the following types 
are analyzed:

• “id”, compulsorily must be present,  and contain as the first  value of unsigned of int 
(XML TEG of <ui></of ui>) of – identifier [PGO], corresponding armctlg.

• “procedure”, compulsorily must be present, and contain as the first value of std::string 
(XML TEG  of  <s></s>)  –  the  name  of  procedure  [PGO].  On  the  parameters  of 
procedure [PGO] see below.

• “aliases”,  compulsorily  must  be  present  and  contain  0  or  more  than  the  values of 
std::string (XML TEG of <s></s>) – of alternative names for the procedure [PGO], for 
the future use in the translator.

Example XML for describing pgo:
<pgo>

 <id><ui>5</ui></of id>
 <procedure><s>AKLAB</s></of procedure>
 <aliases>

 <s>PGO1</s>
 <s>pgo01</s>

 </aliases>
</pgo>
Any other units can be contained in the tree, but they are not analyzed. To if necessary add one 
additional characteristic [PGO], the method of ctm::pradis::plugin::Repository::ProcessPGO () is 
simple to enlarge.

2.6 selection of the units of the tree “of prvp”.
The code of the selection of the units of the tree “of plugin”/” of prvp " is contained in the 
method of  ctm::pradis::plugin::Repository::ProcessPRVP ().  In  it  the  subassemblies  of  the 
following types are analyzed:

• “id”, compulsorily must be present,  and contain as the first  value of unsigned of int 
(XML TEG of <ui></of ui>) of – identifier [PRVP], corresponding armctlg.

• “procedure”, compulsorily must be present, and contain as the first value of std::string 
(XML TEG  of  <s></s>)  –  the  name  of  procedure  [PRVP].  On  the  parameters  of 
procedure [PRVP] see below.

7



• “aliases”,  compulsorily  must  be  present  and  contain  0  or  more  than  the  values of 
std::string (XML TEG of <s></s>) – of alternative names for the procedure [PRVP], for 
the future use in the translator.

Example XML for describing prvp:
<prvp>

 <id><ui>59</ui></of id>
 <procedure><s>X</s></of procedure>
 <aliases>

 <s>PRVP1</s>
 <s>prvp01</s>

 </aliases>
</prvp>
Any other units can be contained in the tree, but they are not analyzed. To if necessary add one 
additional characteristic [PRVP], the method of ctm::pradis::plugin::Repository::ProcessPRVP () 
is simple to enlarge.

2.7 addition of new properties and types of components.
By the advantage of the described in the preceding points approach with the construction on 
XML to the file of the tree of assemblies, and their subsequent analysis, is the comparative ease 
of the addition of new elements to the configuration of plugin. In fact, if it is necessary to add the 
new type of components, or new property to the already existing type of components, always it is 
possible to add into the appropriate place XML of file the new subtree of [imenovannykh] TEG, 
which contain the values of simple types (lines, the numbers, etc). After this, the file will be as 
before correctly read into the tree, simply the units of new types yet will not be analyzed. Then, 
should  be  added  the  code  analyzing  the  units  of  new  types  into 
ctm::pradis::plugin::Repository::ProcessPlugin (), ctm::pradis::plugin::Repository::ProcessModel 
(), ctm::pradis::plugin::Repository::ProcessPGO ()  or 
ctm::pradis::plugin::Repository::ProcessPRVP ().  Here will  have  to  preserve values  from the 
units, after determining for them the appropriate structures, or after enlarging those existing.

8



e.     Changes  in  solver  in  the  implementation 
technology.

3.1 global functions of working [repozitarija].
As  it  was  spoken  above,  the  class,  which  represents  in  solver  [repozitarij] of  plugin 
(ctm::pradis::plugin::Repository), is determined in the new initial file of the module of itgdll of 
pradis \ of src \ of pradis32 \ of pradis \ of solver \ of itgdll \ of plugin_repository.cpp. In the 
same file are determined global functions for interaction [repozitariem]:
ITGDLL_INIT_REPOSITORY () of – to initialize (to load) [repozitarij],
ITGDLL_CLEAN_REPOSITORY () of – to clean [repozitarij],
ITGDLL_EXISTS_PLUGIN () of – to verify, does exist in [repozitarii] of component with the 
assigned type and the identifier,
ITGDLL_GET_MODEL_PARAM () of – to return the parameter of the model of element with 
the assigned identifier,
ITGDLL_INVOKE_MODEL () of – to cause the model of element with the assigned identifier,
ITGDLL_INVOKE_PGO () of – to cause [PGO] with the assigned identifier,
ITGDLL_INVOKE_PRVP () of – to cause [PRVP] with the assigned identifier.
All functions are decorated in the style C. during the compilation under Windows in them it is 
used agreement about the calls of stdcall. Because of this, function they can be caused out of 
FORTRAN of the code, compiled with the installations of compiler DIGITAL on silence.

3.2 connection of [repozitarija] of plugin into the solver.
  Load and cleaning of [repozitarija] are added before and after calculation in the initial file of 
[reshatelja] of pradis \ of src \ of pradis32 \ of pradis \ of solver \ of run \ of integr.for. Turning to 
the models of elements, [PGO] and [PRVP] is carried out into pradis \ of src \ of pradis32 \ of 
pradis \ of solver \ of itg \ of integrs.for (procedure FORMY, FORMO, FORMI) solver in the 
initial file. For the connection of plugin of components in this file, into all three functions is 
added  the  operator IF,  which  checks  the  presence  in  [repozitarii]  of  component  with  the 
identifier, which entered from [reshatelja] (call ITGDLL_EXISTS_PLUGIN ()). If component is 
found, is carried out the formation of the list of the parameters and the call of component (with 
the  aid  of ITGDLL_INVOKE_MODEL  (),  ITGDLL_INVOKE_PGO  (), or 
ITGDLL_INVOKE_PRVP ()). If plugin of component is not found, as earlier is caused operator- 
switch GOTO, which carries out passage on the identifier to the call of component, to rigidly 
recorded into the code of integrs.for. Since the file of integrs.for automatically is generated with 
the aid of the modulus of bridge.exe, change Hollerith-coded in integrs.for they are introduced 
into the code of its generation in the files of gformi.for, gformo.for, gformy.for, located into 
pradis \ of src \ of pradis32 \ of pradis \ of solver \ of bridge \.

9



4 interfaces of plugin.

4.1 standardized calls of plugin.
In order to ensure the possibility of the dynamic incorporation of components into the solver, 
without its recompilation it was necessary to develop for all plugin of procedures the united, 
standardized interfaces. By interface of procedure is understood the agreement rel.un. call, and 
also  the  collection  of  its  arguments.  These  agreements  rigidly  are  written  in  the  code  of 
[reshatelja] before its compilation. The names of functions dynamically search for in the module 
of plugin of library after its load.  Solver is used shch of the forms of the calls of libraries, 
proclaimed in in the file of pradis \ of src \ of pradis32 \ of pradis \ of solver \ of itgdll \ of 
plugin_repository.cpp:

• ctm::pradis::plugin::Repository::Library::FN_INIT of – the initialization of the library
• ctm::pradis::plugin::Repository::Library::FN_CLEAN of – cleaning the library
• ctm::pradis::plugin::Repository::FN_MODEL of – the call of the model of the element
• ctm::pradis::plugin::Repository::FN_PGO of – call [PGO]
• ctm::pradis::plugin::Repository::FN_PRVP of – call [PRVP]

All  procedures  do  not  return  the  value  (type  of  the  recovery of  void).  Function of 
ctm::pradis::plugin::Repository::Library::FN_CLEAN does not have arguments, the description 
of the arguments of remaining functions see in the subparagraphs below.

4.2 agreements about the calls and decoration.
During the compilation under Windows all functions, exported from plugin, must be decorated in 
the style C and correspond to agreement about the calls of stdcall, which makes it possible to 
cause  and  to  realize  them  in FORTRAN the  code,  compiled  with  the  aid  of DIGITAL 
FORTRAN with the installations on silence. In C the code the arguments of these functions are 
described and are transferred as indicators, with the call or the realization in FORTRAN the 
code,  arguments  of  functions  by  the  usual  method  they  are  described  as BY  REAL *  8, 
INTEGER * 4 and the like should be focused attention that in the implementation plugin of 
library under Windows on C/Of c++ the exported functions in the style C, stdcall, will have a 
decoration of names of _function_name@N, where N of – the quantity of bytes on the stack, 
utilized for the transfer of arguments. With the registration in XML the file of [repozitarija] it 
follows or to indicate the same names (but not simply function_name), or to, for example, use 
def files for the more convenient decoration. So should be focused attention on the fact that in 
the implementation plugin of library on DIGITAL FORTRAN under Windows, in accordance 
with the recommendations in the following point the names of all exported functions will be 
transferred into the upper register.  To avoid errors one should after  assembling of plugin of 
library examine the decorated names of procedures with the aid of the utility of dumpbin under 
Windows, from [distributiva] MSVC (dumpbin/of exports of name.dll). Unix the analog of – 
utility nm.  In XML the file  of  [repozitarija]  the  names of  procedures  for plugin should  be 
prescribed in accordance with the conclusion of these utilities.

4.3 arguments of the call of initialization.
The call of initialization transfers into plugin the library of the address of the terms COMMON 
of the regions of [reshatelja]: not named,/NOTAT/,/GRCONF/. Thus, the list of the arguments of 
the function of initialization is the following:
(not named)

10



TIME,  STEP,  STEP01,  STEP02,  SMIN,  DABSI,  DRLTI,  STEPMD,  TIMEND,  NAME, 
NSTEP, SYSPRN, NITER, ITR, CODE, NUMINT, NUMPP, CODSTP, CODGRF, NEWINT, 
MINSTP,
(/NOTAT/)
RLMAX, RLMIN, INTMAX, MSHEPS, PI, REZB, REZC, REZD,
(/GRCONF/)
RELYX, XNMPXL, YNMPXL, XNMSMB, YNMSMB, NCOLOR, NMVPAG, MODES, IK4, 
IS4.
Precise sense and  FORTRAN the types of arguments can be looked in the description of the 
terms  COMMON of regions from the documentation on the development of components into 
pradis, located into  pradis \ of res \ of lsv_pradis \ of pradis \ of docs \ of include \. If  plugin 
realizes on C/Of c++ FORTRAN the types of the arguments of the call of initialization they are 
mapped onto types C as follows:
REAL * 8: double *
INTEGER * 4: int *
INTEGER * 2: short *
CHARACTER * N: char *, int * (two parameters! They go consecutively, the second makes 
sense of the length of line and is equal to N).
Attention! In the implementation the function of  initialization one should remember that to 
preserve in global variable  plugin is necessary of address, but not the value of the transmitted 
terms  COMMON of  regions.  In  the  implementation  plugin on  C/Of  c++ this  means  that 
memorized should be the transmitted indicators. In the implementation plugin on FORTRAN is 
recommended the  creating of  the  analogous  TO COMMON described above regions,  which 
contain the indicators (POINTER) of the corresponding types. Inside the call of initialization 
should be tied these indicators to the transmitted in the arguments of call values.

4.4 arguments of the call of the model of element.
Let us transfer the arguments of the call of the model of the element:

• The I: the vector of forces (moments) for the element.
• Y: the jacobian of the model of element.
• The X: the vector of displacements of the units of dimensionality  EXT+ENT. It is not 

used with ADR=2, ADR=3.
• The V: the velocity vector of the units of dimensionality EXT+ENT. It is not used with 

ADR=3.
• A: the G-vector of the units of dimensionality EXT+ENT.
• PAR: the massif of the parameters of model.
• NEW: the vector “new state” of model.
• OLD: the vector “old state” of model.
• WRK: working massif for the model of element.

All arguments have a type REAL * 8 in the implementation of call on FORTRAN, and double *, 
in the implementation on from/[S]++. It is in more detail about the value of arguments (with 
exception of the X, the V, A), and the parameters of the passport of the model of element (EXT, 
ENT, ADR) see documentation on the development of components in pradis, located into pradis 
\ of res \ of lsv_pradis \ of pradis \ of docs \ of include \.

4.5 arguments of call [PGO].
Let us transfer the arguments of call [PGO]:

• NAMEX: the name of model or [PRVP], connected with [PGO]. Massif of gaps, with the 
values of the parameters of passport  VPS=0 and EXT=0 (fixed graphic means). Have a 

11



type CHARACTER * 8 in the implementation of call on FORTRAN, and char *,  int * 
(two arguments!) in the implementation on from/[S]++.

• The I:  the vector of forces (moments) for the element.  Has a type  REAL * 8 in the 
implementation  of  call  on  FORTRAN,  and  double *,  in  the  implementation  on 
from/[S]++.

• The X: the vector of displacements of the units of the model, connected with [PGO], 
dimensionality EXT. It is not used with the value of the parameters of passport  VPS=0 
and  EXT=0, or with the value of the parameter  UNV>0 (in this case it is used vector 
INNER). Has a type REAL * 8 in the implementation of call on FORTRAN, and double 
*, in the implementation on from/[S]++.

• The  V:  the  velocity  vector  of  the  units  of  the  model,  connected  with  [PGO], 
dimensionality EXT. It is not used with the value of the parameters of passport  VPS=0 
and  EXT=0, or with the value of the parameter  UNV>0 (in this case it is used vector 
INNER). Has a type REAL * 8 in the implementation of call on FORTRAN, and double 
*, in the implementation on from/[S]++.

• A: the G-vector of the units of the model, connected with [PGO], dimensionality EXT. It 
is not used with the value of the parameters of passport VPS=0 and EXT=0, or with the 
value of the parameter UNV>0 (in this case it is used vector INNER). Has a type REAL 
* 8 in the implementation of call on FORTRAN, and double *, in the implementation on 
from/[S]++.

• INNER: the vector of the real numbers of the making sense degrees of freedom of the 
model of element, connected with [PGO]. It is not used with the value of the parameters 
of passport VPS=0 and EXT=0, or with the value of the parameter UNV=0 (in this case 
they are used the vector of the X, the V, A). Has a type REAL * 8 in the implementation 
of call on FORTRAN, and double *, in the implementation on from/[S]++.

• EXT: a quantity of degrees of freedom of the model of element, connected with [PGO] 
(length INNER). Has a type INTEGER * 4 in the implementation of call on FORTRAN, 
and int *, in the implementation on from/[S]++.

• PARX: the vector of the parameters of the model, connected with [PGO]. It is not used 
with the value of the parameters of passport VPS=0 and EXT=0. Has a type REAL * 8 in 
the  implementation  of  call  on  FORTRAN,  and  double *,  in  the  implementation  on 
from/[S]++.

• WRKX: the working vector of the model, connected with [PGO]. It is not used with the 
value of the parameters of passport  VPS=0 and  EXT=0. Has a type  REAL * 8 in the 
implementation  of  call  on  FORTRAN,  and  double *,  in  the  implementation  on 
from/[S]++.

• PAR: the vector of the parameters [PGO]. Has a type REAL * 8 in the implementation of 
call on FORTRAN, and double *, in the implementation on from/[S]++.

• WRK: working vector [PGO]. Has a type  REAL * 8 in the implementation of call on 
FORTRAN, and double *, in the implementation on from/[S]++.

• PARLR2: the vector of the parameters of the current layer of image. Has a type REAL * 
8 in the implementation of call on FORTRAN, and double *, in the implementation on 
from/[S]++.

It is in more detail about the value of arguments (with exception  of the X,  the V,  A), and the 
parameters  of  passport  [PGO]  see  documentation  on  the  addition  of  components  to  pradis, 
located into pradis \ of res \ of lsv_pradis \ of pradis \ of docs \ of include \.

12



4.6 arguments of call [PRVP].
• XOUT: the calculated output variable or the vector of the calculated output variables. 

Has a type REAL * 8 in the implementation of call on FORTRAN, and double *, in the 
implementation on from/[S]++.

• PAR: the massif of the parameters [PRVP]. Has a type REAL * 8 in the implementation 
of call on FORTRAN, and double *, in the implementation on from/[S]++.

• NEW: the vector “new state” OF [PRVP]. Has a type REAL * 8 in the implementation of 
call on FORTRAN, and double *, in the implementation on from/[S]++.

• OLD: the vector “old state” OF [PRVP]. Has a type REAL * 8 in the implementation of 
call on FORTRAN, and double *, in the implementation on from/[S]++.

• WRK: working massif for [PRVP]. Has a type REAL * 8 in the implementation of call 
on FORTRAN, and double *, in the implementation on from/[S]++.

• A: the common vector of the real variables of [reshatelja]. Has a type REAL * 8 in the 
implementation  of  call  on  FORTRAN,  and  double *,  in  the  implementation  on 
from/[S]++.

• DOFADDR: the massif of addresses in the vector A, along which are located necessary 
[PRVP] of the value of the degrees of freedom - displacement, speed, or acceleration. If 
the number of unit for [PRVP] into PRADISlang is assigned as [nomer]_[uzla] of – of 
displacement,  if  it  is  assigned  as  [nomer]_[uzla]'  -  speed,  and  if  it  is  assigned  as 
[nomer]_[uzla] " - acceleration. Has a type INTEGER * 4 in the implementation of call 
on FORTRAN, and int *, in the implementation on from/[S]++.

• NDOF: the size of vector DOFADDR. Has a type INTEGER * 4 in the implementation 
of call on FORTRAN, and int *, in the implementation on from/[S]++.

It is in more detail about the value of arguments (with exception A, DOFADDR, NDOF), and the 
parameters  of  passport  [PRVP] see documentation on the  addition of  components  to  pradis, 
located into pradis \ of res \ of lsv_pradis \ of pradis \ of docs \ of include \.

13



5 the addition of plugin to assembling of [reshatelja].

Let us transfer the steps, which must be made during the addition of plugin of component to the 
solver:

• To create assembling the dynamic library of plugin. Under Windows in the medium MSVC6 
+ OF DIGITAL Of fortran it should be use the wizard MS Of visual Of studio.  If  the 
development of plugin of library is conducted in assembling of cantilever [reshatelja], one 
should locate  the project of  plugin of  library in  the subdirectory of  pradis \  of  src  \  of 
pradis32 \ of pradis \ of solver \ of plugin \. In this case it should be established in tuning of 
the design of way to the directory of temporary files, the output directories of assembling, as 
is customary in assembling of [reshatelja] (see tuning the project of the test of plugin of the 
library of pradis \  of src \ of pradis32 \ of pradis \  of solver \ of plugin \ of balka \ of 
balka.dsp). In tuning of runtime FORTRAN (or) one should establish the use of runtime as 
multiflow dynamic library.

• To add in assembling of the dynamic library of plugin initial file, with determination and 
export of the call of the initialization of the library before the calculation. In more detail 
about the agreements of the calls of plugin of libraries, the transfer of their arguments and 
the size of the call of initialization see the preceding point. It is important to remember that 
the determination of the function of initialization must be encountered in the codes of plugin 
of library exactly one time, in contrast to the calls of the components (models of elements, 
[PGO], [PRVP]), which there can be a arbitrary quantity. If plugin library realizes under 
Windows on DIGITAL FORTRAN, it should be use the file of pradis \ of src \ of pradis32 \ 
of pradis \ of solver \ of plugin \ of init.inc, in which is determined and [eksportirovana] the 
procedure of the initialization (see the start of file in the initial file of pradis \ of src \ of 
pradis32 \ of pradis \ of solver \ of plugin \ of balka \ of balka.for). In the file of init.inc, 
transferred  [reshatelem]  the  members COMMON of  regions  tie  to FORTRAN to  the 
indicators, which are placed into analogous COMMON of region. If plugin library realizes 
on C/Of c++, it should be use the file of pradis \ of src \ of pradis32 \ of pradis \ of solver \ 
of  plugin  \  of  init.h,  in  which  is  determined and [eksportirovana]  the  procedure  of  the 
initialization (see the start of file in the initial file of pradis \ of src \ of pradis32 \ of pradis \ 
of solver \ of plugin \ md \ of main.cpp). In the file of init.h, transferred [reshatelem] the 
indicators to the terms COMMON of regions remain in the global variable of – aggregate 
from these indicators.

• To add in assembling of the dynamic library of plugin initial file, with determination and 
export  of  calls  of  one,  or  several plugin of  components  (models  of  elements,  [PGO], 
[PRVP]). In more detail about the agreements of the calls of plugin of libraries, the transfer 
of their arguments and the sizes of the calls of components see the preceding point. If plugin 
library realizes under Windows on DIGITAL FORTRAN, it should be use the file of pradis 
\  of  src  \  of  pradis32 \  of  pradis  \  of  solver \  of  plugin \ of  common.inc,  in which are 
determined BY  COMMON of  region  from  the  indicators FORTRAN,  corresponding 
COMMON to the regions of [reshatelja]. The values of the terms of these COMMON of 
regions can be required plugin to components with the calculation. See the start of the file in 
the initial files of plugin of the component of balka.for (model), aklab.for ([PGO]), X.for 
([PRVP]) realizing test. In the files it is possible to borrow the method of the export of the 
calls  of  components  with  the  aid  of  the  special  commentary  (for  example!DEC$ 
ATTRIBUTES DLLEXPORT::AKLAB). If plugin library realizes under Windows on C/Of 
c++, it should be use the file of pradis \ of src \ of pradis32 \ of pradis \ of solver \ of plugin \ 
of common.h, in which is determined structure- aggregate from the indicators to variable 
COMMON of regions [reshatelja]. The values of the terms COMMON of regions can be 
required plugin to components with the calculation. For the access to the indicators to the 
terms COMMON of regions it follows to use macro PLUGIN_COMMON as by the name of 

14



the variable- structure, terms of which are indicators. See a example of the start of the file of 
common.h, and the application of a macro PLUGIN_COMMON in the initial file of pradis \ 
of src \ of pradis32 \ of pradis \ of solver \ of plugin \ md \ of main.cpp, which realizes test 
plugin to component (model of element MD). In the project of pradis \ of src \ of pradis32 \ 
of pradis \ of solver \ of plugin \ md also it is possible to borrow the method of exportation 
and decoration of the call of component in the dynamic library with the aid of .DEF of file.

• To register component in the binary catalog PRADIS of armctlg. For this it follows to use 
the utility of arm with the parameter!. It should be caused in the directory, where is located 
file with the expansion .FOR, which is begun from the special commentary of component. If 
plugin of component realizes to C++, for the registration with the aid of arm should be 
created the file with the expansion .FOR, which contains only this special  commentary. 
After  registration  with  the  aid  of arm,  should  be  determined armctlg the  identifier  of 
component,  for  the  subsequent  introduction in  [repozitarij] of  plugin (see  the  following 
subparagraph). For this he is proposed to open the modified file of armctlg by the editor of 
the binary files MS Of visual Of studio. In the file should be found the first entry of the 
name of the added component and memorized the number of the line of entry (to the left in 
16- [richnoj] form). This number one should transfer into the decimal form, divide by 80, 
and add 1, for which, for example, it is possible to use standard calculator Windows. So will 
be obtained armctlg the identifier of component.

• To register in [repozitarii] of plugin library, call of its initialization and calls of plugin of 
components realized in it. See the point, which describes of [repozitarij] of plugin, and also 
the example to the registration of test plugin of libraries. On obtaining of the identifier of 
component for the registration see in the previous subparagraph.

If into plugin components is required the call of the library functions of [reshatelja] (for example, 
S00X), they cannot be caused from the static libraries, directly connected by c plugin by library. 
This because then the library functions can attempt to use COMMON by the regions of [reshatelja] 
directly, and they in the module of the dynamic of plugin of library be absent. In order to use library 
functions in the realizations of plugin of components, it is necessary to carry out their “wrappers” 
into the module of itgdll and to connect plugin library during the assembling from itgdll.lib. Then 
with the call of the function of plugin library will be turned to the module of itgdll,  and there 
narrower than function they will be correctly caused. See a example of call from pradis \ of src \ of 
pradis32 \ of pradis \ of solver \ of plugin \ of balka \ of aklab.for of functions DRAWAB and 
W_GLASS, which are the wrappers of real library functions and are determined into pradis \ of src \ 
of pradis32 \ of pradis \ of solver \ of itgdll. At the present moment in itgdll is included the limited 
set of the library functions, which were required in the implementation test plugin of the libraries of 
balka and md. It is assumed that subsequently all necessary functions will be wrapped up by the 
analogs,  determined  into pradis \  of  src  \  of  pradis32  \  of  pradis  \  of  solver  \  of  itgdll  \  of 
libdllexp.f90.

15


	Content
	1.Description of technology.
	2.[Repozitarij] of plugin.
	e.     Changes in solver in the implementation technology.
	4 interfaces of plugin.
	4.1standardized calls of plugin.
	5the addition of plugin to assembling of [reshatelja].

