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1. Simple example

Let us examine oscillatory system with one degree 
of freedom. The body of mass m is connected with the 
fixed  base  by  means  of  the  elastic  spring.  Its  motion 
occurs in  the medium with liquid resistance under  the 
action of external force (Fig. 1.1.). The position of body 
in the space and its initial velocity are assigned for the 
initial moment of time. It is necessary for each moment 
of time in the range from t0 to t[konech] to determine 
displacement, speed and acceleration of body.

Since  it  is  necessary  to  illustrate  solution  of 
nonlinear  problem,  we  will  consider  that  the  force  of 
liquid  resistance  is  proportional  to  the  square  of  the 
relative speed of the ends of damper (Fig. of 1.2.[b]). The 
elastic force of spring linearly depends on displacement 
(Fig. of 1.2.[a]), the influencing force has the sinusoidal 
nature (Fig. of 1.2.[v]).

The dependences, which make it possible to obtain 
differential equation of motion, in accordance with second Newton's law take the form:

ma F F Fс у в= + +                               (1.1)

Fig. 1.1

Fig. 1.2
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or

F F F Fс у в и+ + + = 0 , (1.2)

where  taking  into  account  the  selected 
directions ([ris].1.3):

F Q
T

tс = sin
2π

F kxу = −

F vв = − µ  v
              (1.3)

F maи = −

Here x, v and a - respectively, displacement, speed and the acceleration of body.

The substitution of relationships (1.3) into equation (1.2) gives:

− − − + =kx vv ma Q
T

tµ π
 sin

2
0

                        (1.4)
Taking into account that

v
dx
dt

=
     and

a
d x

dt
=

2

2
, (1.5)

we obtain the differential equation of motion of the body:

kx
dx
dt

dx
dt

m
d x

dt
Q

T
t+ + − =µ π

 
2

2

2
0sin

              (1.6)

The use of a numerical approach to the integration of equation (1.6) assumes the presence 
of approximate solution for specific moments of time, i.e., temporary axis is represented by the 
totality of points t0, t1, t2,… ti, ti+1,… tn (Fig. 1.4), in each of which the approximate 
solution of equation searches for (1.6).

Fig. 1.4.

Fig. 1.3.
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Integration is achieved consecutively, the selection of the value of the sequential step Οφ δτ
ι depends both on the required indices of accuracy and on the results of integration for the 
already passed temporary points. 

Thus, the use of a numerical approach to the solution of equation (1.6) makes it possible to 
pass from the continuous values x, v, a in entire time interval from t=0 to t=t[konech]. to the 
set  of discrete values xi, vi, ai for  specific moments of time ti.  In this  case the algebraic 
formulas of the selected method of integration substitute differential relationships (1.5). Thus, 
the formulas of the implicit one-step method of Stormer establish the following dependence for 
the variables xi, vi in terms of th values of xi-1, vi-1 [1] e known from the previous step:

x x v t a
t

i i i i i
i= + +− −1 1

2

2
∆ ∆

                                    (1.7)

v v a ti i i i= +−1 ∆
,

where
∆t t ti i i= − −1 , 

i n= 1,

t0 - initial time,
x0, v0 - initial values of displacement and speed,
tn - finite time.

The values x0 and v0 must be known for the initial moment of time t0. Setting aside for 
the moment a question of the selection of the value of the step of integration ti, let us determine 
values x1, v1, a1 for moment of time t1 = t0 +D t1.

Equation (1.4) for moment of time ti takes the form:

kx v v ma Q
T

ti i i i i+ + − =µ π
 sin

2
0

              (1.8)
We supplement this relationship with the formulas of the selected method of integration 

(1.7) and we obtain for moment of time t1 the closed system of equations:

kx v v ma Q
T

t1 1 1 1 1
2

0+ + − =µ π
 sin

x x v t a
t

1 0 0 1 1
1
2

2
= + +∆ ∆

                                (1.9)

v v a t1 0 1 1= + ∆
Let us reduce the obtained system to one equation, after expressing unknowns x1 and a1 

through v1:

a
v v

t1
1 0

1

= −
∆

                                                   (1.10)

x x
v v

t1 0
0 1

12
= + + ∆

We obtain:
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k x
v v

t v v m
v v

t
Q

T
t( ) sin0

0 1
1 1 1

1 0

1
12

2
0+ + + + − − =∆

∆
µ π
 

        (1.11)
Grouping cofactors with the identical degrees of unknown v1, relationship (1.11) can be 

written down in the form:

α β γ    v v v1 1 1 0+ + =
, (1.12)

where 
α µ  =  

β  =  
k t

2
1∆

∆
+ m

t1                                          (1.12[a])

γ π
   =  kx0 + − −k

v t mv
t

Q
T

t0 1 0

1
12

2∆
∆

sin

Let us note that relationship (1.12) preserves its form for any moment of time ti during the 
appropriate replacement of subscripts (1 on i, 0 on i -1). 

Thus, the use of formulas of the method of integration makes it possible to leave from the 
differential  relationships  on  the  time  and  converts  initial  differential  equation  (1.6)  to  the 
nonlinear equation of form (1.12), which must be solved at each step on the time.

Equation (1.12) is solved by Newton's method. Let us allow itself to resemble the sequence 
of actions during the solution of nonlinear equation by Newton's method.

The equation of the form is examined:

f z( ) = 0
, (1.13)

where f (z) - nonlinear function relative to unknown z.

The algorithm of numerical solution includes the 
following steps:

1) the selection of initial  approximation to the 
solution - value z0;

2)  the  organization  of  the  sequence  of  the 
iterations, for each of which is refined the obtained on 
the previous  iteration value z according to  diagram 
(Fig. 1.5.a):

z z zj j j= +−1 ∆                 (1.14)

∆z
f z

f z
j

j

j
= −

−

−
( )

' ( )

1

1

,

Fig. 1.5
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where f (zj-1) - the value of function f (z) with z=zj-1, f '(zj-1) - the value derived f 
(z)/dz with with z=zj-1;

e) checking on each iteration of the condition for the curtailment of iterations ([ris].1.5.[b]):

z z zj j j
z− = ≤−1 ∆ δ

                                   (1.15)

f z j
f( ) ≤ δ

where δ f - the permissible discrepancy (deviation from zero) of the right side of equation (1.13);
δz  - the permissible value of a difference in the solution on two adjacent iterations;

4) checking limitation to the maximum permissible quantity of the iterations:

j j≤ max                                                          (1.16)
Geometrically the solution of equation (1.13) is reduced to finding of the abscissa of point 

of intersection with the axis z by the curve f (z). On each j -1 of the iteration of Newton's 
method the solution of this problem is substituted by finding point of intersection with tangent to 
the curve f (z) with the z axis, in this case the tangent is built for z=zj-1.

We return to the numerical solution of equation (1.12). After designating z=v1, we have:

α β γ  z  zz + + = 0
                                        (1.17)

or

f z( ) ,= 0

where

f z z( ) = + +α β γ  z  z
                                 (1.18)

For solving equation (1.17) the expression for the derivative f (z) will be required us by 
Newton's method:

f z z' ( ) = +2α β  
                                        (1.19)

Let  us  assign initial  data  in  order  to  calculate  the values  of  coefficients α, β, τηε γ of 
equation (1.17):

k = of 20000 N/m, 
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µ  =     1000
2

2

Нс
м ,

m = of 0.1 kgf,

Q = 1000, T = 0.2p, F = of 1000sin 10t,

Initial conditions and the step of the integration:

x0 00 0 0 001= = = ,  v  ,  t  c 1∆ .

Then, according to (1.12)

α = 1000

β = ∗ + =200000 001
2

01
0 001

110
. .

.

γ  = ∗ + ∗ ∗ − ∗ − = −200000 20000
0 0 001

2
01 0
0 001

1000 0 01 10
. .

.
sin .

Thus,
f z zz z( ) = + −1000 110 10

                            (1.20)

f z z' ( ) = +2000 110
                                      (1.21)

Let us assign the values of the permissible errors for checking conditions (1.15):

δ z = 0 001.

δ f = 01.
                                                          (1.22)

The maximum permissible quantity of iterations let us take as equal shch.

Let us select initial approximation to the solution

z0 = 0

First iteration.

z z z1 0 1= + ∆
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∆z
f z

f z
1

0

0

10000 0 1100 10
20000 110

0 09091= − = − ∗ ∗ + ∗ −
∗ +

=( )

' ( )
.

z1 0 0 09091 0 09091= + =. .

Checking the completion of the iterations:

∆z1   z> δ

f z( ) . . . .1 10000 090910 09091 1100 0909110 8 26= ∗ ∗ + ∗ − =

f z f( )1  > δ

Passage to the following iteration.

Second iteration.

z z z2 1 2= + ∆

∆z
f z

f z
2

1

1

8 26
20000 09091110

0 02831= − = −
∗ +

= −( )

' ( )

.
.

.

z2 0 090910 02831 0 06260= − =. . .

Checking the completion of the iterations:

∆z2   z> δ

f z( ) . . . .2 10000 06260 0626 1100 0626 10 0 80= ∗ ∗ + ∗ − =

f z f( )2  > δ

Passage to the following iteration.

Third iteration.

∆z3 0 00341= − .

z3 0 05918= .
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∆z3   z> δ

f z f( ) .3 0 012 = <δ

Fourth iteration.

∆z4 0 00005= − .

z4 0 05913= .

∆z4   z< δ

f z f( ) .4 0 0006 = <δ

Both  conditions  (1.15)  are  satisfied,  limitation  (1.16)  is  not  exceeded.  The  solution  is 
achieved. We calculated the value of speed for moment of time t1, after obtaining

v1 0 05913= .  м / с

After using formulas (1.10), let us determine the values of acceleration and displacement 
for the same moment of time.

a1
0 05913 0

0 001
59 13=

−
=

.
.

.   м / с2

x1 0
0 0 05913

2
0 001 2 96 5= +

+
∗ = −

.
. .  e   м

The solution for moment of time t1 is obtained. Let us make one additional step on the time 
in order to illustrate now the selection of the value of step. Equations (1.9) - (1.12) are valid for 
any moment of time taking into account the corresponding replacement of subscripts. For is 2nd 
GO of step on the time we have:

kx v ma Q
T

t2 2 2 2
2

0+ + − =µ
π

  v2 sin
 

x x v t a
t

2 1 1 2 2
2
2

2
= + +∆

∆

                                 (1.23)

v v a t2 1 2 2= + ∆
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Just as at the first step, we reduce this system to one equation relative to the speed:

α β γ  v    v   =2 2 2 0v + +
 ,

where

α µ  =

β  =  
k t m

t
∆

∆
2

22
+

                                          (1.24)

γ
π

   =  kx1
1 2 1

2
22

2
+ − −k

v t mv
t

Q
T

t
∆

∆
sin

The value of step ∆τ 2 we preliminarily take as equal ∆τ 1, i.e., 0.001 s. then, taking into 
account  initial  data  and obtained at  the  first  step  of  the solution,  it  is  possible  to  calculate 
coefficients α, β, τηε γ:

α   =  1000

β   =  =
20000 0 001

2
0 1

0 001
110

∗
+

. .
.

γ    =   20000 2 96 5 20000
0 05913 0 001

2
0 1 0 05913

0 001
∗ − +

∗
−

∗
−.

. . . .
.

e

− ∗






 = −1000

2
0 2

0 002 24 7sin
.

. .
π
π

We again have the nonlinear equation:

1000 110 24 7 02 2 2v v v+ − =.
, (1.25)

which we solve by Newton's method.

In this place the smooth alliteration of our computations must be interrupted and focused 
special  attention on the selection of initial  approximation to the solution in the algorithm of 
Newton's method.

For the initial approximation to the solution let us accept such value of speed, which a body 
would have at the moment of time t2, if the acceleration of body from moment of time t2 did not 
change, i.e., we consider that

v v a t2
0

1 1 2= + ∆
                                                       (1.26)
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This the so-called explicit step (or forecast), when into formula for the speed enters already 
known acceleration.  The  velocity,  obtained  by  explicit  step,  will  use  we not  only  as  initial 
approximation in Newton's method, but also with the estimate of the magnitude of the selected 
step on the time. 

Thus, initial approximation (forecast):

v2
0 0 05913 59 13 0 001 0 11826= + ∗ =. . . .

Omitting the detailed computations (they they are analogous to those given for the first step 
on the time), the iterations of Newton's method lead to the following sequence of values:

the initial approximation: 
v2

0 0 11826= .

the first iteration: v2
1 0 11172= .

the second iteration: 
v2

2 0 11159= .
, the solution is achieved.

We obtained that with the value of step τηε ∆τ of 2=0.001, speed for moment of time t2

v2 0 11159= .   м / с

Time is alien to estimate a error in the made step on the time.
A error  in the method of  integration on i-  m step,  called  local  error,  we will  evaluate 

according to the following formula:

lpi =
−v vi

p
i
c

2
 , (1.27)

where vip - explicit forecast of velocity on i- m step, determined by the formula

v v a ti
p

i i i= +− −1 1∆
, (1.28)

vic - value of speed, which we obtained the as a result iterative solution, using the implicit 
formula

v v a ti
c

i i i= +−1 ∆
                                                   (1.29)
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Let us note that relationship (1.28) already 
adapted  by  us  with  the  selection  of  initial 
approximation to the solution in the algorithm 
of Newton's method (look dependence (1.26)).

The  calculation  of  speeds  according  to 
formulas (1.28) and (1.29) and the essence of 
the  estimation  of  local  error  according  to 
formula (1.27) explains Fig. 1.6.

At the moment of time ti -1 we be situated 
at the point of vi-1. If for enumerating the value 
vi we will use explicit formula (1.28), then the 
point of vi=vip will  lie on the tangent,  carried 
out to the curve v (t) at point ti -1, since ai-1 is a 
slope tangent of this tangent to the X-axis.

With  the  calculation vi with  the  use  of 
formula (1.29) we need value ai, i.e., the rate of 
change, carried out to the curve v (t) already at 

point ti. Since at the moment of time ti -1 we nothing know about the behavior of function v (t) 
with t=ti and tangent to the curve v (t) at point ti also conduct we cannot, then we calculate vi 
=vic not directly according to formula (1.29), but by the method of joint solution of system of 
equations (1.7), where it  enters and relationship (1.29). In this case for us it  is necessary to 
consecutively approach the solution (i.e., to vic) for several Newtonian iterations.

Figure 1.6. shows that the explicit forecast of vip and the corrected solution of vic lie on the 
different sides from the curve v (t), passing through the point ti -1. The greater the difference 
between vic and vip, the stronger at the current step differs the graph of speed from the straight 
line and the higher the error  in the integration at  the step.  Figure also makes it  possible  to 
understand that the decrease of the value of step  ti leads to the decrease of the local error, 
evaluated according to formula (1.27), since decreases the divergence of the values of vip and 
vic.

The calculation of local error is important to us not so much by itself, as as the means, 
which  makes  it  possible  to  estimate  the  acceptability  of  the  made step  on  the  time  and  to 
recommend the value of the following step.

The mechanism of the determination of the value of step, on the basis of the criterion of 
local error, is sufficiently simple. The value of the maximum permissible local error at the step 

of integration is given δ l .   According to the results of sequential i- GO of step the values of 

the permissible ()
δ l and actually obtained local error are compared ( lpi ). If 

lpi ≤ δ l , then 
the  made  step  is  recognized  as  successful.  Passage  to  the  following  step  on  the  time  is 
accomplished; its value for the one-step methods of integrating the first order of accuracy, to 
which correspond formulas (1.7) utilized by us, is selected on the dependence:

∆ ∆t c ti i+ =1
δ  
lp

l

i  , (1.30)

where ∆τι - value of the perfect step on the time,
∆τι+1− the recommended value of the following step,
c - correction factor, c < 1.

Fig. 1.6
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But if lpi > δ l , then the value of the made step ∆τι is too great and does not ensure the 
required accuracy. Therefore it is necessary to conduct calculation on i- m step again, using with 
the reduced value ∆τι. In this case for the selection of the value Οφ δτι also is used formula 
(1.30), only obtained on it value of step is used not for the following (i+1) - GO of step, but for 
the repeated calculation on current i- m step.

Returning for the investigated example of the numerical solution of equation (1.6), let us 
conduct for it is 2nd GO of the step of integration the estimation of local error and value of step.

In the course of computation we obtained the values:

v p
2 0 11826= .

vc
2 0 11159= .

Local error at the step:

lp2 =
−

=
0 11826 0 11159

2
0 00333

. .
.

After accepting the permissible error at the step:

δ  l = 0 001.
,

we are forced to establish that 
lp2 > δ l the, i.e., executed step with the value τηε ∆τ of  

2=0.001 does not ensure the required accuracy of results and necessary to repeat calculation on is 
2nd  m  step  with  the  reduced  value ∆τ 2.  The  recommended  value ∆τ 2 for  the  repeated 
calculation let us determine with the aid of formula (1.30), using a coefficient of c=0.8:

∆t e2 0 8 0 001
0 001

0 00333
0 438 3= ∗ ∗ = −. .

.
.

.

The results of repeated calculation with the step ∆τ 2 = 0.438e- e give the following values 
of the forecast of speed, corrected solution and local error:

v p
2 0 08505= .

vc
2 0 08509= .

lp2 =
−

=
0 08505 0 08509

2
0 00002

. .
.

Since the obtained now value 
lp2 < δ l ,  the second step can be considered successful 

from the point of view of the assigned accuracy of the solution. Now let  us supplement the 
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calculated  value  of  the  speed of  v2=0.08509 m/s with  the  values  of  acceleration a2 and  of 
displacement x2, after using the formulas of connection (1.7):

a
v v

t e2
2 1

2

20 08509 0 05913
0 438 3

59 21=
−

=
−

−
=

∆
. .

.
.   м / с

x x v t a
t

e e2 1 1 2 2
2
2

2
2 96 5 0 05913 0 438 3= + + = − ∗ − +∆

∆
. . .  +    

( )
+

−
= −59 21

0 438 3
2

6 12 5
2

.
.

.
e

e   м

Up to the present moment we obtained numerical solution for two points of the temporary 
axis:

Fig. 1.7

Following the  given algorithm,  it  is  possible  to  continue calculation  and to  obtain the 
solution for entire time interval, which interests researcher.

Before summing up the first  sums,  would be desirable  to  return to  Fig.  1.6.  for  some 
explanations. At the moment of time ti -1 we be situated at the point of vi-1. Through it the curve 
v passes (t). It is the so-called integral curve for moment of time ti -1, i.e., the graph of speed, 
which corresponds to the exact solution of equation (1.6) with the initial condition

v vt t ii= −−
=

1 1
                                                       (1.31)

Since we solve equation (1.6) approximately, actually on each i- m the step of numerical 
integration for the time we pass with one integral curve, which satisfies initial condition (1.31), 
to another integral curve, which is already the exact solution of equation (1.6) with the initial 
condition

v vt t ii= =
                                                           (1.32)

(in Fig. 1.6. integral curve for t=ti it is designated by dotted line).

Therefore as the result of numerical solution serve that broken, passing through the totality 
of  the integral  curves,  each of  which is  the exact  solution of equation (1.6)  with the initial 
conditions, determined by numerical solution at the current step (Fig. 1.8).
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We sum up the basic moments, essential 
from  the  point  of  view  of  the  numerical 
analysis of the example examined.

The sequence of our actions was reduced 
to the following:

1. They formed the differential equation, 
which describes the behavior of the system:

kx
dx
dt

m
d x
dt

Q
T

t+ + − =µ
π

 
dx
dt

2

2
2

0sin

With the formation of equation 2-1 Newton's law, which is been one of the methods of the 
recording of the condition of dynamic equilibrium, were used.

2.  They  represented  the  obtained  equation  in  the  form,  that  not  containing  clearly 
differential relationships, after writing down the latter separately:

kx v ma Q
T

t+ + − =µ
π

  v sin
2

0

v
dx
dt

=

a
dv
dt

d x
dt

= =
2

2

e. Were replaced the differential linkage between x, v and a with the algebraic equations of 
relation, valid for the selected method of integration, after reducing thus the task of obtaining 
solving the in the form continuous functions to  the task of finding the set  of  the values of 
unknown function at the isolated points of the temporary axis:

kx v ma Q
T

ti i i i i+ + − =µ
π

  v sin
2

0

x x v t a
t

i i i i i
i= + +− −1 1

2

2
∆ ∆

v v a ti i i i= +−1 ∆
,

where ∆τι - value i- GO of step on the time
(∆τι = ti - ti -1);
xi, vi, ai - value x, v and a with t=ti.

Fig. 1.8
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4. The obtained system they reduced to one equation, after expressing xi, ai through vi:

α β γ  v    v   =i i iv + + 0

Thus, at each step on the time calculation was reduced to the solution of the nonlinear 
algebraic equation of form f (z) =0, where z=vi.

shch. The solution of nonlinear equation was carried out by Newton's method. This is the 
iterative  numerical  method  (solution  it  is  obtained  approximated,  with  the  predetermined 
accuracy, for several passages). For obtaining the solution on each passage it is necessary to 
calculate  the  values  of  function f  (z) and  by  its  derivative df  (z)/dz.  We  determine  initial 
approximation to the solution, using a formula of explicit forecast.

'. The accuracy of numerical integration for the time was evaluated via the control of the 
local error at the step of integration, which depends on a difference in the explicit and implicit 
solution. With the unsatisfactory value of local error was repeated the calculation at the current 
step with the reduced value of step ∆τι.

".  If local error at the step is stale in the limits of that permitted, then considered step 
successful  and,  using  the  calculated  value  of  speed vi,  were  calculated  acceleration ai and 
displacement xi over the equations of relation, valid for the selected method of integration.

8. The value of sequential step on the time was selected, on the basis of the relationship of 
the permissible and actually obtained local error at the current step of integration.

Based on this simple example we wanted to sufficiently designate the canvas of numerical 
solution, by which adheres to the algorithm of computational nucleus PRADIS by large smears. 
It is natural that the mass of most important questions remained out of the region of examination. 
To many of them we will return later, explanations on another better to obtain in the specialized 
literature, references on which with each opportunity we will give.

We  hope  that  the  given  example  makes  it  possible  to  understand  the  essence  of  the 
numerical solution of the differential equation of motion of body, formed in accordance with the 
design diagram accepted. However, it must be noted, that very formation of differential equation 
was conducted “by hand” and some questions in the course of computation were also solved 
nonformally (for example, the analytical determination of the form of the function, which is been 
derivative df (z)/dz in the algorithm of Newton's method). Therefore we continue the examination 
of methods and algorithms  PRADIS from the explanation of the principles  of the automatic 
formation of the system of the differential equations (for the considered example - one equation), 
which describe the behavior of the object being investigated.
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2. Mechanism of the formation of the mathematical 
model

Let us return to the examination of system to [ris].1.1.

Let us rewrite again the equation of the equilibrium:

F F F Fc у в и+ + + = 0
                              (2.1)

Since  with  the  numerical  integration  we  obtain  the  solution  at  the  isolated  points  of 
temporary axis, for each i- GO of moment of time equation (2.1) can be recorded in the form:

F F F Fi
c

i
у

i
в

i
и+ + + = 0

, (2.2)

where

F Q
T

ti
c = − sin

2π

,
F kxi

у
i= , (2.3)

Fi
в = µ  v vi i ,

F mai
и

i=

We consider also that for i- GO of moment of time the values xi, vi, ai are connected with 
equations (1.7), which in view of their use in our further computations let us reproduce again:

x x v t a
t

i i i i i
i= + +− −1 1

2

2
∆ ∆

                      (2.4)
v v a ti i i i= +−1 ∆

You will focus attention, that equations (2.3) are differed from analogous expressions (1.3) 
in terms of sign.  This connected with the fact  that  in  PRADIS with the examination of the 
conditions of equilibrium are summarized the efforts, which act from the side of system to the 
elements, but not effort from the side of elements as this have accepted we with the selection of 
positive direction for the forces in accordance with Fig. 1.3.

It would be possible to obtain the equation of form (1.8) by substitution (2.3) in (2.2), but 
we this make will not be, since we should form and analyze mathematical model on the universal 
algorithm. We thus, have sufficiently universal equation of the equilibrium of form (2.2), valid 
for each i- GO of moment of time. Let us note that the passage from writing of the equation of 
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equilibrium in the form (2.1) to the record in the form (2.2) marked with itself a qualitative 
change in the type of equation. If relationship (2.1) is differential equation (since the entering it 
dependences for the forces use derived displacements over the time), relationship (2.2) there is a 
already  simply  algebraic  nonlinear equation  (since  the  connection  between  xi,  vi,  ai is 
determined by the algebraic equations (2.4)). But in the form (2.2) it is possible to enter also with 
the nonlinear equation, as we enter with equation (1.12), namely: to decide by his method of 
Newton.

We have
f z( ) = 0

, (2.5)

where

f z F F F Fi
c

i
у

i
в

i
и( ) = + + +

Variable  z we  can  designate  any  of  the  components  xi,  vi or  ai,  since  they  are 
interconnected by relationships (2.4). Let us accept, as before z=vi.

On each iteration, in accordance with formulas (1.14), we should calculate value f (z) and 
by its derivative df (z)/dz.

Calculation f (z) is reduced to the summing up of the instantaneous values of forces with 
the instantaneous values xi, vi, ai (i - number of step on time, j - number of iteration according to 
Newton). Actually, the computable value  f (z) is the error in the fulfillment of conditions of 
equilibrium, which by Newtonian iterations must be “driven in” within the permissible limits.

Now let us paint derivative df (z)/dz.

( )df z
dz

d F F F F
dz

dF
dz

dF
dz

dF
dz

dF
dz

i
c

i
у

i
в

i
и

i
c

i
у

i
в

i
и( )

=
+ + +

= + + +
             (2.6)

Acting strictly in the science, each of the derivatives in expression (2.6) we must represent 
as the derivative of complex function.

dF
dz

dx dv da

dz
dx
dz

dv
dz

da
dz

i
c i i i

i i i=
+ +

= + +

∂
∂

∂
∂

∂
∂ ∂

∂
∂
∂

∂
∂

  F
  x

  F
  v

  F
  a   F

  x
  F
  v

  F
  a

i
c

i

i
c

i

i
c

i i
c

i

i
c

i

i
c

i

Since z=vi, then

dF
dz

dF
dv

dx
dv

dv
dv

da
dv

i
c

i
c

i

i

i

i

i

i

i
= = + +

∂
∂

∂
∂

∂
∂

  F
  x

  F
  v

  F
  a

i
c

i

i
c

i

i
c

i                                  (2.7)

It is analogous:

dF
dz

dF
dv

dx
dv

dv
dv

da
dv

i
у

i
у

i

i

i

i

i

i

i
= = + +

∂
∂

∂
∂

∂
∂

  F
  x

  F
  v

  F
  a

i
у

i

i
у

i

i
у

i

dF
dz

dF
dv

dx
dv

dv
dv

da
dv

i
в

i
в

i

i

i

i

i

i

i
= = + +

∂
∂

∂
∂

∂
∂

  F
  x

  F
  v

  F
  a

i
в

i

i
в

i

i
в

i                                 (2.7a)
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dF
dz

dF
dv

dx
dv

dv
dv

da
dv

i
и

i
и

i

i

i

i

i

i

i
= = + +

∂
∂

∂
∂

∂
∂

  F
  x

  F
  v

  F
  a

i
и

i

i
и

i

i
и

i

It is utilized the equation of relation (2.4) for obtaining the dependences ai and xi on vi:

a
v v

ti
i i

i
=

− −1

∆
 , (2.8)

x x
v v

ti i
i i= +

+
−

−
1

1

2
∆

We differentiate expressions (2.8) on vi

dx
dv

ti

i

i=
∆
2

dv
dv

i

i
= 1

                                                            (2.9)
da
dv t

i

i i
=

1
∆

Now let us calculate partial derivatives in expressions (2.7), (2.7[a]), using dependences 
(2.3):

For the force   Of fi[s]  :  

∂
∂
  F
  x

i
c

i
= 0

     (Fi[s] it does not depend on the displacement of 
body)

∂
∂
  F
  v

i
c

i
= 0

     (Fi[s] it does not depend on the speed of body) (2.10)

∂
∂
  F
  a

i
c

i
= 0

     (Fi[s] it does not depend on the acceleration of body)

For the force   To fi[u]  :  

∂
∂
  F
  x

i
у

i
k=

∂
∂
  F
  v

i
у

i
= 0

     (To fi[u] it does not depend on the speed of body) 
(2.11)

19



∂
∂
  F
  a

i
у

i
= 0

     (To fi[u] it does not depend on the acceleration of 
body)

For the force   Of fi[v]  :  

∂
∂
  F
  x

i
в

i
= 0

    (Fi[v] it does not depend on the displacement of body)

∂
∂

µ
  F
  v

  vi
i
в

i
= 2

                                  (2.12)

∂
∂
  F
  a

i
d

i
= 0

    (Fi[v] it does not depend on the acceleration of body)

For the force   Of fi[i]  :  

∂
∂
  F
  x

i
и

i
= 0

    (Fi[i] it does not depend on the displacement of body)

∂
∂
  F
  v

i
и

i
= 0

    (Fi[i] it does not depend on the speed of body) (2.13)

∂
∂
  F
  a

i
и

i
m=

We substitute the obtained values of particular derivatives of efforts  and the values of 
coefficients (2.9) in formulas (2.7), (2.7[a]):

∂
∂
  F
  z

i
c

= 0
 ,

∂
∂
  F
  z

i
у k t

=
∆
2  , (2.14)

∂
∂

µ
  F
  z

  vi
i
в

= 2
 ,

∂
∂
  F
  z

i
и

i

m
t

=
∆
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We summarize the terms of formula (2.6):

∂
∂

µ
  f( z)

  z
  = + +

k t
v

m
t

i
i

i

∆
∆2

2
                          (2.15)

Comparing result with previously obtained formula (1.19), for which the coefficients are 
taken from relationships (1.12), it is possible to establish that they are similar.

Now, having the capability to calculate f (z) and df (z)/dz, to continue calculation according 
to algorithm described earlier does not present labor. However, as spoke one their heroes Of 
[tolkiena], “situation at the present moment can be by that requiring some explanations”. After 
being torn through the paling of total and particular derivatives, we obtained the same result as 
earlier,  but patience in the reader these computations for sure fairly of [poubavili].  By what 
acquisitions do redeem these labor expenses?

1. Not at all it was necessary to extract differential equation of motion.

2. The expanded form of the nonlinear equation of form (1.12), to solution of which is 
reduced the calculation at each step on the time, also proved to be uncalled-for.

e. Functional dependence for the derivative df (z)/dz was not required.

If  we  attentively  examine 
our reasonings, then we used the 
following  information  (list  of  th 
mathematical  model  of 
information,  e  necessary  for  the 
formation  given  below  we  will 
further call “enumeration”):

1.  Information  about 
jointing of the elements of network (Fig. 2.1).

2. Condition of equilibrium of forces, recorded for i- GO of moment of time, and the being 
nonlinear algebraic equation relative to xi, vi, ai the form:

Fi
k

k

( )

=
∑ =

1

4

0
 , (2.16)

where  4- number  of  forces,  which  are  converged  in  the  unit  of  jointing  (quantity  of 
[stykujushchikhsja] branches of elements).

Equation (2.16) still is called topological, since it is determined by topology, i.e., structure 
of connections in the diagram.

e. Expressions, which make it possible to define efforts in each element as the function of 
displacement,  speed,  acceleration and time -  (2.3).  This  the  so-called  component equations, 
which describe the behavior of the separate component (element) of diagram.

Fig. 2.1
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4. Expressions for the particular derivatives of the efforts, which act in the element, on the 
displacement, the speed, to acceleration - see dependences (2.10) - (2.14).

shch. Algebraic equations of relation x, v, a for current time - the formula of the method of 
integration (2.4).

'.  Indication,  relative to which of the variables -  x, v or  a -  to conduct the solution of 
nonlinear equation, i.e., which is selected as variable z of function f (z) in formula (2.5).

Of the enumerated information it is sufficient for the realization of the machine algorithms 
of the formation of the mathematical model of object.

So that in the reader it would not remain dark places and white spots, we again in more 
detail will pass on example already repeatedly dismantled at this document.

The  thus,  let  there  be  technical  system,  processes  in  which  require  analysis.  Design 
diagram corresponds [ris].1.1.

System  it  is  necessary  to  present  in  the  form  the  totality  of  the  elements, 
[stykujushchikhsja] according to the general degrees of freedom (units). A quantity of degrees of 
freedom (units) in each element is determined by the variety of element (Fig. 2.2).

There  is  a  concept  of  the  model  of  
element.  User  gathers  the  model  of  system 
from the models of separate elements as toy in 
the children's designer. It (user) it must worry 
only the correctness of assembling, remaining 
questions  of  the  formation  of  mathematical 
model  -  headache  of  the  developers  of 
software.  Having  before  itself  the  design 
diagram (Fig.  1.1)  and  exarticulating  from it 
elements (Fig.  2.2),  user finds the models of 
the equivalent components in the library of the 
models  of  the  elements  of  program  set  and 
describes  the  structure  of  the  diagram being 
investigated. 

The  description  of  structure  consists  in 
the  connection  of  elements  according  to  the 
general degrees of freedom and the indication of the fixed units.  For the completeness of 
picture let us give the piece of the text of the description of structure in the input language 
PRADIS:

I FRAGMENT: Example
# BASE: 1
# STRUCTURE:
[Pruzhina]' K (1 2; Stiffness coefficient)
Nonlinear damper 'MUNL (1 2; Coefficient of viscosity)
Mass 'M (2; Mass of body)
Action 'FSIN (2 1; Q, T, initial phase)

Fig. 2.2
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By the preparation for the given description user reported to program set  PRADIS entire 
necessary  information  on  jointing  of  the  elements  of  the  network  (see  the  point  of  1 
enumerations of the necessary for information for the formation mathematical model of object). 
User, in the first place, selected the models of the elements from the library of models - this of 
model K, MUNL, M, FSIN. In the second place, connected they properly, after applying action 
to the mass in unit 2, to which it also joined the ends of spring and damper. Finally, described 
unit 1 as fixed, after fastening the thus free ends of spring and damper.

Let us examine now those actions of the programs, which make it possible as a whole to 
present the mechanism of the work of computational algorithm.

In  the  process  of  working  the  description  of  the  structure  of  model  is  determined the 
dimensionality of system of equations, i.e., a quantity of units, in which must be satisfied the 
conditions of equilibrium. In the example in question two units, one of which is fixed. At the 
stage of the formation of mathematical model the structure of data will be prepared on both 
units; however, in the stage of calculation the equation, which corresponds to the fixed unit, is 
excluded from the examination, and all kinematic characteristics of the fixed unit (displacement, 
speed, acceleration) it is established in zero.

The stage of numerical integration is the sequence of the steps on the time, each of which is 
reduced  to  the  solution  of  the  nonlinear  equation  of  the  equilibrium  of  form  (2.16).  The 
information,  given  above  in  the  points  of  3-6  enumerations, is  necessary  for  solving  this 
equation.

Now time itself to focus attention on the model of elements and to explain, which their role 
in the computational algorithm. Input information for any model of element are:

- the constant list of the parameters of the model of element;

- the instantaneous values of displacements, speeds and accelerations of those units, with 
which this element is connected. 

The model of element is obligated for current time to calculate according to these data:

1) the efforts, which act from the side of system to the elements, i.e., the vector of the 
efforts of the element (see the point e of enumeration);

2)  the  partial  derivatives  of  the  computable  efforts  for  displacements,  speeds  and 
accelerations of the units of element, i.e., the so-called Jacobi matrix (jacobian) the element (see 
the point of 4 enumerations).

If element has  N of degrees of freedom, then the length of the vector of the efforts of 
element also N, and the jacobian of element has a length N * N * e.

How  this  does  appear?  For  example,  the 
developer of the binodal model of one-dimensional 
dimensionless  inertia-free  ideally  elastic  spring, 
which we is utilized in our example, 
it realized the following dependences for the efforts 
and the jacobian of element (Fig. 2.3):

( )F k x x1 1 2= −  ,

Fig. 2.3
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( )F k x x2 2 1= −               (2.17)

∂
∂
  F
  x

1

1
= k

 , 

∂
∂
  F
  x

1

2
= −k

(2.18)
∂
∂
  F
  x1

2 = −k
 ,  

∂
∂
  F
  x2

2 = k

∂
∂

∂
∂

∂
∂

∂
∂

  F
  v

  F
  v

  F
  v

  F
  v

1

1

1

2

2

1

2

2
0= = = =

                       (2.19)

∂
∂

∂
∂

∂
∂

∂
∂

  F
  a

  F
  a

  F
  a

  F
  a

1

1

1

2

2

1

2

2
0= = = =

                      (2.20)

In accordance with the given dependences, for any moment of time the model of element in 
terms of tN instantaneous values of displacements, speeds and accelerations (although for the 
element in question are important only the displacements) e transmitted into it  calculates the 
values of the efforts, which act on the ends of spring, and the value of particular derivatives of 
efforts for displacements, speeds and accelerations of both units. The vector of efforts consists 
their 2 elements, jacobian - of 12.

Since in the design diagram of object in question unit 1 of spring is fixed, in this specific 
case from the entire information, computed by model and transferred “upward”, will be claimed 
only that part, which is connected with the loose second unit:

( )F k x x2 2 1= −                                                (2.21)

∂
∂
  F
  x2

2 = k
                                                        (2.22)

∂
∂

∂
∂

  F
  v

  F
  a2

2 2

2
0= =

This  information  makes  it  possible  to  consider  the  contribution  of  spring  during  the 
solution of the nonlinear equation of form (2.5) on the algorithm, presented with the conclusion 
of relationships (2.6) - (2.15). The contribution of remaining elements (damper, mass, external 
action) is considered analogously.

In order to define concretely the aforesaid, let us continue the previously integration of a 
example initiated, after making sequential 3- 1 step on the time. In this case we will use the 
formal algorithm, which is been based on the sequence of calculations according to formulas 
(2.5) - (2.15).

Let us recall that according to the results is 2nd GO of step on the time (with t2=1.438e-3) 
we obtained the following values of unknowns:
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x e2 6 12 5= −.  м

v2 0 08509= .  м / c

a2 59 21= .   м / c2

The value of step was equal ∆t2=0.438 e-3, th value of local error e obtained at the step 
composed lp2=0.000018.

The recommended value of ∆t3 for the following step we determine from formula (1.30) 
taking into account of c=0.8 and δl = 0.001:

Further we act according to the diagram, represented in the figures of 2.4[a]-2.4[v]. from 
Fig. of 2.4.[a] it follows that before i- m with step on the time must be known the values ti -1, xi-
1, vi-1, ai-1, ∆ti. It is possible to ascertain that before beginning 3- GO of step we actually have 
available information about the values t2, x2, v2, a2, ∆t3.

The details  of  the algorithm of  the fulfillment  of  separate  step let  us get  from Fig.  of 
2.4.[b].

1.  We  determine  the  values  of  the  reduction  coefficients  of  jacobian  -  ∂ ∂  x   i z

∂ ∂  v   i z ,  
∂ ∂  a   i z

(see formulas (2.7),  (2.7[a])),  that  depend on the value of step.  Since 
during calculations at the first two steps for the basic variable we already accepted speed (i.e., 
z=vi),  summing up  of  jacobian is  conducted through formulas  (2.7),  (2.7[a]),  for  which  the 
reduction coefficients are calculated from dependences (2.9):

dx
dv

t e
e3

3

3

2
2 63 3

2
1 31 3= =

−
= −

∆ .
.

dv
dv

3

3
1=

 
da
dv t e

3

3 3

1 1
2 63 3

380 2= =
−

=
∆ .

.

Let  us  recall  that  relationships (2.9)  are  determined by the formulas  of  the method of 
integration (2.4).

2.Calculate the initial  approximation to the solution by the formula of explicit  forecast 
(1.28):

 v v a t e3
0

2 2 3 0 08509 59 21 2 63 3 0 24081= + = + ∗ − =∆ . . . .

You will focus attention, that as the initial approximation must be calculated not only the 
value of vi0, but also value of xi0, ai0, necessary for the calculation in the models of elements. 

Therefore:

a a3
0

2 59 21= = .

x x v t a
t

e e3
0

2 2 3 3
3
2

2
6 12 5 0 08509 2 63 3= + + = − ∗ − +∆

∆
. . . +  
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( )
         + 59 21

2 63 3
2

46 5 5
2

.
.

.
e

e
−

= −

e. After establishing the counter of iterations by equal to  1, is realized the sequence of 
actions on 1- 1 iteration of Newton (see Fig 2.4[v]).

4. Turning to the models of elements. Calculation of the vector of forces and jacobian of 
each element in terms of the instantaneous values of x30, v30, a30.

At the present moment let us limit to data analysis only on the loose unit:
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Fig. of 2.4[a]
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Fig. of 2.4[b]
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Fig. of 2.4[v]
Spring:

F kx eу = = ∗ − =20000 46 5 5 9 3. .

∂
∂
  F
   x

у

k= = 20000

∂
∂

∂
∂

  F
  v

  F
  a

у у

= = 0

Damper:

Fв = = ∗ ∗ =µ  v v 1000 0 24081 0 24081 58 0. . .

∂
∂
  F
   x

в

= 0

∂
∂

µ
  F
   v

  v
в

= = ∗ ∗ =2 2 1000 0 24081 481 6. .

∂
∂
  F
  a

у

= 0

Mass point:

F maи = = ∗ =0 1 59 21 5 9. . .  

∂
∂

∂
∂

  F
   x

  F
   v

и и

= = 0

∂
∂
  F
   a

и

m= = 0 1.

Applicable force:

( )F Q
T

t e eс = = − − + − = −sin sin
.

. . .
2

1000
2

0 2
1 438 3 2 63 3 40 6

π π
π

 

∂
∂

∂
∂

∂
∂

  F
   x

  F
   v

  F
   a

c c c

= = = 0

shch.  We  summarize  the  forces,  calculated  in  the  models  of  elements  and  which  are 
converged in the loose unit, 
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F F F F Fу в и с= + + + = − + + + =∑ 40 6 9 3 58 0 5 9 32 6. . . . .

The obtained sum is the value of function  f (z) on the current iteration (see expression 
(2.5)).

Let us calculate now df (z)/dz, using relationships (2.6), (2.7), (2.7[a]):

df z
dz

dF
dz

dF
dz

dF
dz

dF
dz

i
c

i
у

i
в

i
и( )

= + + +

dF
dz

e
c

= ∗ − + ∗ + ∗ =0 1 31 3 0 1 0 380 2 0. .

dF
dz

e
у

= ∗ − + ∗ + ∗ =20000 1 31 3 0 1 0 380 2 26 2. . .

dF
dz

e
в

= ∗ − + ∗ + ∗ =0 1 31 3 481 6 1 0 380 2 481 6. . . .

∂
∂
  F
  z

и

e= ∗ − + ∗ + ∗ =0 1 31 3 0 1 0 1 380 2 38 0. . . .

df z
dz
( )

. . . .= + + + =0 26 2 481 6 38 0 545 8

6.[Opredeljaem] the increase ∆z 1

:

∆z
f z
f z

1
0

0
32 6
545 8

0 05973=
′

= − = −
( )
( )

.
.

.

". We calculate sequential approximation to the solution

z z z1 0 1 0 24081 0 05973 0 18108= + = − =∆ . . .

8. In terms of the obtained value z 1

we refine the instantaneous values of x31, v31, a31, 
using formulas (2.81):

v z3
1 1 0 18108= = .

a
v v

t e3
1 3

1
2

3

0 18108 0 08509
2 63 3

36 5=
−

=
−

−
=

∆
. .

.
.

x x
v v

t e e e3
1

2
2 3

1

32
6 12 5

0 08509 0 18108
2

2 63 3 41 1 5= +
+

= − +
+

∗ − = −∆ .
. .

. .

Calculations on the first iteration of Newton are finished.
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9. We check the conditions of the completion of Newtonian iterations. Let us recall that 
earlier we accepted the following values of the permissible errors for checking conditions (1.15):

δ z= 0 001.

δ f = 0 1.

On the basis of these values, we conclude that

f z( )0 > δ f

∆z1 > δ z

Thus, Newtonian iterations at the current step on the time must be continued.

10.  ,  before passing to the following iteration,  we check, is not exhausted a maximum 
quantity of the iterations:

j = 1 < of jmax = shch

11. We increase the counter of the number of the iterations:

j = j + 1 = 1 + 1 = 2

12. We check the sequence of actions in Fig. of 2.4[v] for the second iteration of Newton's 
method. These actions will lead us to the following solution:

f z F( ) .1 3 6= = −∑

∆z2 0 00858= − .

x e3
2 39 8 4= −.

v3
2 0 17250= .

a3
2 33 2= .

Checking the conditions of the end of iterations will show that the iterations are not yet 
finished:

f z( )1 > δ f

∆z2 > δ z

Checking:

j = 2 < of jmax = shch

last obstacles from the way of fulfilling the sequential, third iteration are removed.
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13. The third iteration will prove to be the latter. The following result will be obtained:

f z( ) .2 0 07= − < δ f

∆z3 0 00018= − . < δ z

x e3
3 39 8 4= −.

v3
3 0 17232= .

a3
3 33 2= .

14. In accordance with the diagram of 2.4[b], after the successful completion of Newtonian 
iterations it is necessary to estimate the value of local error at the step of the integration

lp
v vp c

3
3 3

2
0 24081 0 17232

2
0 034=

−
=

−
=

. .
.

15. We calculate th value of the following step e recommended on the criterion of local 
error.

Here should be put one stage direction. The practice of calculations showed that formula 
(1.30) was acceptable only in the specific range of the relationships of δl/of lpi, namely - near 
one. With significant differences  in δl/of lpi from one the recommended with formula (1.30) 
value  of  step  is,  as  a  rule,  overstated  leads  to  the  unjustified  loss  of  steps  because  of  the 
noncompliance to the requirements of accuracy in the integration. Of this we will be convinced 
even now, since for the selection of the value of the current step used formula (1.30) with the 
relationship of δl/lpi = 0.001/0.000018 = 55.5. As the consequence of this, the made step with 
the recommended with formula (1.30) value of the step of ∆t3=2.63e-3 led us to the result, when 
the comparison of that obtained (lp3 = 0.034) and maximum permissible (δl=0.001) local errors 
actually determines the need of repeating the calculations n 3. of m step with the reduced value 
of step.

We correct the rule of the selection of step on the criterion of local error. It appears as 
follows:
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Then,  continuing  the  consideration  of  algorithm  from  the  interrupted  place,  the 
recommended value of step for the repeated calculation n 3. of m step let us determine taking 
into account (2.23):

δ 
lp

l

3
= =

0 001
0 034

0 03
.
.

.

Since δl/of lp3 < 0.25,

∆ ∆t с t e eе кр . .
.
.

.= ∗ ∗ = ∗ − ∗ = −3 0 8 2 63 3
0 001
0 034

0 061 3
δ l

3lp
 c

16. We establish ∆t3= 0.061 * e-3 and we repeat the calculations n 3. of m step, beginning 
from point 1.

Repeated calculation with this value of step leads to the following results for moment of 
the time of t3=t2+ t3 = 1.499 * e-3:

x e3 6 64 5= −.  м

v3 0 08862= .   м / с

a3 58 1= .  м / c2

Local  error  in  the  limits  of  standard.  Recommended  value  for  the  following  step  of 
∆t[rek]=0.264 * e-3[s].

Calculation at the third step on the time is finished.

Basic, to what it would be desirable to focus attention on the completion of the selection of 
a example, this separation of the functions between strictly the program of integration and the 
programs of the realization of the models of elements. To program of integration, which works 
on  the  algorithm  Fig.  of  2.4[a]-2.4[v],  generally  speaking,  nevertheless,  what  processes  to 
integrate. Its dependence on the models of elements is reduced only to timely obtaining from 
them of  the  vectors  of  forces  and  matrices  of  jacobians.  But  this  information  reflects  what 
properties of separate elements, the program of integration this concern must not. The models of 
elements,  in  turn,  have  their  level  of  the  independence  of  information  with  the  completely 
outlined responsibilities before “the tops”. I.e., the physical properties of the separate element of 
object are reflected in the component equations in the level of the model of element, and the 
program of integration works at the level of the equations of the equilibrium of flows, without 
concerning,  from  what  relationships  the  components  of  these  flows  are  calculated.  This 
differentiation of functions determines the universality of computational nucleus  PRADIS the, 
i.e., possibility in principle of calculating any objects, processes in which are subordinated to 
equilibrium law of flow variables (equilibrium of forces, electrical and heat fluxes, fluid flow 
rates and gas).
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3. Briefly about the angular degrees of freedom, 
utilized in the three-dimensional elements PRADIS

It is known that solid body of one angular position into another can be transferred by one 
turning around a certain axis, called axis of final rotation (Euler's theorem). Let us designate e1, 
e2, e 3- the direction cosines of axis of final rotation, Fi - angle of final rotation. Then it is 
possible to introduce four kinematic parameters, that describe the angular motion of solid body 
[1,2]:

x1 = e1 * sin (Fi/2),
x2 = e2 * sin (Fi/2), (1)
x3 = e3 * sin (Fi/2),
x4 = cos (Fi/2),

and one equation of relation for these parameters:

x1 * x1 + x2 * x2 + x3 * x3 + x4 * x4 = 1 (2)

In contrast to any set of three kinematic parameters (in particular - the Euler angles) the 
indicated four parameters they do not degenerate with any position of solid body, (i.e. go to 
infinity neither parameters themselves nor speed of their change).

The angular degrees of freedom, accepted in the three-dimensional elements PRADIS, are 
expressed as kinematic parameters (1) as follows:

q1 = x1 * Lq,
q2 = x2 * Lq, (e)
q3 = x3 * Lq,
q4 = x4 * Lq,

where
Lq = sqrt (q1 * q1+q2 * of q2+q3 * of q3+q4 * 
q4).                                                   (4)

The first three degrees of freedom are external for the models of elements, the fourth - 
internal, hidden before the user. The initial value of the potential variable, corresponding internal 
degree of freedom, is set in the models of elements equalequal to 1.

Flow variables for the first three degrees of freedom are moments along the global axes of 
the X, Y, Z. the fourth (internal) flow variable it holds in control change in the time of value Lq 
(4):

i4 = Mu * d (Lq)/dT, (shch)

where Mu - constant of proportionality, identical for all degrees of freedom of this type and 
taken in the models of elements to the equal

Mu = DABSI/of sqrt (MSHEPS).                                                                     (')
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What operations,  from the point  of view of user,  are correct with the work with three 
external  angular  degrees  of  freedom  of  the  models  of  elements?  Almost  all  methods, 
characteristic for forward motion, remain valid and in this case.

In particular:

• it  is  possible  to  forbid  (basing  the  appropriate  units)  motion  according  to  the 
selected angular degrees of freedom, which is equivalent to the reduction of the 
dimensionality of the vector, directed along the axis of final rotation (for example, 
with two fixed angular degrees of freedom, point it can revolve only around the 
axis, which corresponds to the loose unit);

• connection in the direction of the rotation between the points of abutting members 
it is also possible to achieve (if this is necessary) not according to all three degrees 
of freedom, but only on those selected.

With which it is necessary to be more careful? In contrast to the flat rotation, the first and 
second  derivatives  of  the  potential  variables  (e)  will  not  be  angular  velocity  and  angular 
acceleration respectively. Therefore the, for example, initial conditions, given by model VN, will 
not, in the general case, determine initial angular velocity. It is natural that also [PRVP] of type 
the V and A will derive not angular velocity, but instantaneous values of the first and second 
derivative of the potential variable. However, the values of angular velocities and accelerations 
are accessible from the working vector of some models of elements, in particular J3O.
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