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1. Simple example

Let us examine oscillatory system with one degree

of freedom. The body of mass m is connected with the 7
fixed base by means of the elastic spring. Its motion
occurs in the medium with liquid resistance under the k m
action of external force (Fig. 1.1.). The position of body MA— 1 C
in the space and its initial velocity are assigned for the u ° _F>
initial moment of time. It is necessary for each moment —{—
of time in the range from €@ to ¢fkoenech] to determine O
displacement, speed and acceleration of body.
X
Fig. 1.1

O\

Fig. 1.2

Since it is necessary to illustrate solution of
nonlinear problem, we will consider that the force of
liquid resistance is proportional to the square of the
relative speed of the ends of damper (Fig. of 1.2.[b]). The
elastic force of spring linearly depends on displacement
(Fig. of 1.2.[a]), the influencing force has the sinusoidal
nature (Fig. of 1.2.[v]).

The dependences, which make it possible to obtain

differential equation of motion, in accordance with second Newton's law take the form:

meEF+F + F (1.1)



or

F+F +F+F

=0

where taking into account the selected
directions ([ris].1.3):

2
F =Qsin—t
quc;

F =-kx
F=-

p vl (1.3)
F'=-ma

, (1.2)
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Fig. 1.3.

Here x, » and @ - respectively, displacement, speed and the acceleration of body.

The substitution of relationships (1.3) into equation (1.2) gives:

-lcx-[wM-mal- Qsin:%nn: 0

(1.4)
Taking into account that
dx _ dPx
T de “T az
it an ok (1.5)
we obtain the differential equation of motion of the body:
dald &~ . 21
kx+ i —|—|+m— — Qsin—¢
de d dé T (1.6)

The use of a numerical approach to the integration of equation (1.6) assumes the presence
of approximate solution for specific moments of time, i.e., temporary axis is represented by the
totality of points ¢@, ¢1. €2.... @i, titl.... tn (Fig. 1.4), in each of which the approximate

solution of equation searches for (1.6).




Integration is achieved consecutively, the selection of the value of the sequential step O &t
 depends both on the required indices of accuracy and on the results of integration for the
already passed temporary points.

Thus, the use of a numerical approach to the solution of equation (1.6) makes it possible to
pass from the continuous values x. ©. @ in entire time interval from ¢=@ to ¢=¢fkonech] to the
set of discrete values ~xi. vi. ai for specific moments of time #i. In this case the algebraic
formulas of the selected method of integration substitute differential relationships (1.5). Thus,
the formulas of the implicit one-step method of Stormer establish the following dependence for
the variables wxi. o in terms of th values of xi=1. vi-1 [1] e known from the previous step:

AP

N = ap e At a

(1.7)

v, = v tal

where Ag=¢-¢ , || #= 1.7a
t0 - initial time,

x0, vO - initial values of displacement and speed,

tn - finite time.

The values @ and @ must be known for the initial moment of time #@. Setting aside for
the moment a question of the selection of the value of the step of integration «i, let us determine
values a7, 1. al for moment of time ¢7 = ¢@ +I) ¢1.

Equation (1.4) for moment of time # takes the form:

+mq—0sin27”t,. =0

kx;+ e,

v;

(1.8)
We supplement this relationship with the formulas of the selected method of integration
(1.7) and we obtain for moment of time #Z the closed system of equations:

Ekxi+ [ oo+ me - QSi‘?;ntl =0

At}
= -"0+"0At1+“1?]

(1.9)

v =t taly

Let us reduce the obtained system to one equation, after expressing unknowns x7 and e 7
through o1 :

4"
TN
(1.10)
+
xl=x0+vo letl

We obtain:



yte
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K(x,

At|)+pv]|v]|+n¢%—0sin27”tl =0
! (1.11)
Grouping cofactors with the identical degrees of unknown o1, relationship (1.11) can be
written down in the form:

a vl|vl|+ﬂ v, ty=0

(1.12)
where a=H
kAt  m
A 2 +Atl
(1.12[a])
N T e B, NP
2 1 T

Let us note that relationship (1.12) preserves its form for any moment of time ¢ during the
appropriate replacement of subscripts (1 ond, O ond =17).

Thus, the use of formulas of the method of integration makes it possible to leave from the
differential relationships on the time and converts initial differential equation (1.6) to the
nonlinear equation of form (1.12), which must be solved at each step on the time.

Equation (1.12) is solved by Newton's method. Let us allow itself to resemble the sequence
of actions during the solution of nonlinear equation by Newton's method.

The equation of the form is examined:

(=9 (1.13)

where £ ¢s) - nonlinear function relative to unknown =.

The algorithm of numerical solution includes the
following steps:

1) the selection of initial approximation to the
solution - value @,

2) the organization of the sequence of the
iterations, for each of which is refined the obtained on

the previous iteration value s according to diagram S I R
. (=]
(Flg' l's'a): TOUYHOEe ﬁ( \E

pereHme

PR
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where £ (=z§-1) - the value of function £ ¢z) with s=z§=1. f '(zj-1) - the value derived f
(z)/dz with with z=zj-1;

e) checking on each iteration of the condition for the curtailment of iterations ([ris].1.5.[b]):

‘z‘i—zi_" = ‘Az"‘ <0,

(1.15)

‘f(zj )‘ <3,

wherem- the permissible discrepancy (deviation from zero) of the right side of equation (1.13);

II' - the permissible value of a difference in the solution on two adjacent iterations;

4) checking limitation to the maximum permissible quantity of the iterations:

IS o (1.16)

Geometrically the solution of equation (1.13) is reduced to finding of the abscissa of point
of intersection with the axis = by the curve £ ¢z). On each § =7 of the iteration of Newton's
method the solution of this problem is substituted by finding point of intersection with tangent to
the curve £ ¢z) with the z axis, in this case the tangent is built for s=xzy=1.

We return to the numerical solution of equation (1.12). After designating s=e 1, we have:

a #4+ﬁz+y=0

(1.17)
or
F(3)=0.
where
f(z)= +[ st
(=) a# 'Bz Y (1.18)

For solving equation (1.17) the expression for the derivative £ ¢z) will be required us by
Newton's method:

'(3)=20 |4+ p

(1.19)

Let us assign initial data in order to calculate the values of coefficients @, 3, Tney of
equation (1.17):

k = 0f 20000 V/rmn.



Hc?
M2

U = 1000

m = of 0.1 kgf.

Q =1000. 7 =0.2p, ¥ = of 1000sin 10t.

Initial conditions and the step of the integration:

%=0. v =0, At,=0.001

Then, according to (1.12)

a=100
B= 200mn.001+ 0.1 —_—y
2 0.001
y =200000+ 20000 0-00L 010, 4 0aind.01= - 1¢
2 0.001
Thus,
£(z)=10082+116&- 1(
(=) 4 (1.20)
' (3)=2008+11(
(1.21)

Let us assign the values of the permissible errors for checking conditions (1.15):

J.=0.00]

5,=0.1

(1.22)
The maximum permissible quantity of iterations let us take as equal shch.
Let us select initial approximation to the solution

z0=0

First iteration.

="+ A




o -
At = (=" _ 1000000+ 1160-10_
r(s") 20000 +110

=' = 0+ 0.0909% 0.0909

Checking the completion of the iterations:

ol 5,

£(s')=10000.090970.0909 ¥ 1 100.0909+ 10= 8.2¢

‘f(zl)‘ > &,

Passage to the following iteration.

Second iteration.

2_ 1 2
=z +Ax

A= f(s'y _ 8.26

= =-0.0283
(3" 20000.09091110

2 =0.090940.0233 £ 0.0626

Checking the completion of the iterations:

e

£(<°) = 10000.06260.0626- 1100.0626 10= 0.8(

‘ f(z2)‘ > 3,

Passage to the following iteration.

Third iteration.

Az* =-0.0034

#=0.0591




o .

\f(z“)\ =0.01Z3,

Fourth iteration.

As'=-0.0000

5'=0.0591

oot <,

|#¢s")| = 0.00065,

Both conditions (1.15) are satisfied, limitation (1.16) is not exceeded. The solution is
achieved. We calculated the value of speed for moment of time #17, after obtaining

v =0.05913 /¢

After using formulas (1.10), let us determine the values of acceleration and displacement
for the same moment of time.

_005913-0_ L,
T 0001 M
x, =O+L(2)5913ED.001=2.96 e—5m

The solution for moment of time ¢/ is obtained. Let us make one additional step on the time
in order to illustrate now the selection of the value of step. Equations (1.9) - (1.12) are valid for
any moment of time taking into account the corresponding replacement of subscripts. For is 2nd
GO of step on the time we have:

. 2T
kx,+ U vz‘v2‘+ma2 —QsmTt2 =0

A}
x, =x; +v,At, ta, BN

(1.23)

v, =v, +a,At,




Just as at the first step, we reduce this system to one equation relative to the speed:

a vz‘v2‘+ﬂ vty =0

where
a=u
g - ke, m_
2 At
: (1.24)
v,At, mv, . 2T
= + - -
y kx, +k 2 A, O sin T z,

The value of step AT , we preliminarily take as equal AT ,, i.e., 0.001 s. then, taking into
account initial data and obtained at the first step of the solution, it is possible to calculate
coefficients a, 3, TNEYY:

a = 1000

200000D.001 0.1
B = + =110

0.059130D.001  0.1[0.05913

=2 .96e—5 +2
y 0000[2.96¢ —5 + 20000 > 0.001

2T
—=1000 sin [0.002 —24.7
27T

We again have the nonlinear equation:

1000w, v, |+ 1100, —24.7=0

(1.25)

which we solve by Newton's method.

In this place the smooth alliteration of our computations must be interrupted and focused
special attention on the selection of initial approximation to the solution in the algorithm of
Newton's method.

For the initial approximation to the solution let us accept such value of speed, which a body
would have at the moment of time #2, if the acceleration of body from moment of time #2 did not
change, i.e., we consider that

0
v, =v, +a, At

10



This the so-called explicit step (or forecast), when into formula for the speed enters already
known acceleration. The velocity, obtained by explicit step, will use we not only as initial
approximation in Newton's method, but also with the estimate of the magnitude of the selected
step on the time.

Thus, initial approximation (forecast):

v? =0.05913 + 59.13[0.001 = 0.11826

Omitting the detailed computations (they they are analogous to those given for the first step
on the time), the iterations of Newton's method lead to the following sequence of values:

vy =0.11826

the initial approximation:

vi=0.11172

the first iteration:

v =0.11159

the second iteration: the solution is achieved.

We obtained that with the value of step TNE AT ,¢2-9.001, Speed for moment of time #2

v, =0.11159 m/c

Time is alien to estimate a error in the made step on the time.
A error in the method of integration on i- m step, called local error, we will evaluate
according to the following formula:

,(1.27)

where vip - explicit forecast of velocity on i- m step, determined by the formula

P _
v; =vita;, A

(1.28)

vic - value of speed, which we obtained the as a result iterative solution, using the implicit
formula

C —
v; =v;,_; +a;[t

(1.29)

11



Let us note that relationship (1.28) already
adapted by us with the selection of initial
approximation to the solution in the algorithm
of Newton's method (look dependence (1.26)).

The calculation of speeds according to
formulas (1.28) and (1.29) and the essence of
the estimation of local error according to
formula (1.27) explains Fig. 1.6.

At the moment of time # -1 we be situated
at the point of vi-1. If for enumerating the value
vi we will use explicit formula (1.28), then the
point of vi=vip will lie on the tangent, carried
out to the curve v (¢) at point # -1, since ai-1 is a
slope tangent of this tangent to the X-axis.

With the calculation vi with the use of
formula (1.29) we need value ai, i.e., the rate of
change, carried out to the curve v (2) already at
point #. Since at the moment of time # -1 we nothing know about the behavior of function v ()
with #=#i and tangent to the curve v (¢) at point # also conduct we cannot, then we calculate vi
=vic not directly according to formula (1.29), but by the method of joint solution of system of
equations (1.7), where it enters and relationship (1.29). In this case for us it is necessary to
consecutively approach the solution (i.e., to vic) for several Newtonian iterations.

Figure 1.6. shows that the explicit forecast of vip and the corrected solution of vic lie on the
different sides from the curve v (#), passing through the point # -1. The greater the difference
between vic and vip, the stronger at the current step differs the graph of speed from the straight
line and the higher the error in the integration at the step. Figure also makes it possible to
understand that the decrease of the value of step # leads to the decrease of the local error,
evaluated according to formula (1.27), since decreases the divergence of the values of vip and
vic.

The calculation of local error is important to us not so much by itself, as as the means,
which makes it possible to estimate the acceptability of the made step on the time and to
recommend the value of the following step.

The mechanism of the determination of the value of step, on the basis of the criterion of
local error, is sufficiently simple. The value of the maximum permissible local error at the step

g

Fig. 1.6

of integration is given

g

According to the results of sequential i- GO of step the values of

<9,

the permissible () nd actually obtained local error are compared ( b ). If then
the made step is recognized as successful. Passage to the following step on the time is
accomplished; its value for the one-step methods of integrating the first order of accuracy, to
which correspond formulas (1.7) utilized by us, is selected on the dependence:

/5
Aty = cht; EI

where ATl - value of the perfect step on the time,
At1+1- the recommended value of the following step,
¢ - correction factor, ¢ < 1.

, (1.30)

12



Ip; > 9,

But if then the value of the made step ATl is too great and does not ensure the
required accuracy. Therefore it is necessary to conduct calculation on i- m step again, using with
the reduced value ATl. In this case for the selection of the value O@dtl also is used formula
(1.30), only obtained on it value of step is used not for the following (i+1) - GO of step, but for
the repeated calculation on current i- m step.

Returning for the investigated example of the numerical solution of equation (1.6), let us
conduct for it is 2nd GO of the step of integration the estimation of local error and value of step.

In the course of computation we obtained the values:

vy =0.11826

vS =0.11159

Local error at the step:

|0.11826—0.11159|
Ip:=| > | = 0.00333

After accepting the permissible error at the step:

5 ,=0.001

Ip,>9,

we are forced to establish that the, i.e., executed step with the value TNEAT ,,
2-0.001 does not ensure the required accuracy of results and necessary to repeat calculation on is
2nd m step with the reduced value AT ,. The recommended value AT , for the repeated
calculation let us determine with the aid of formula (1.30), using a coefficient of c=0.8:

0.001
0.00333

Az, = 0.800.001 =0.438¢—-3

The results of repeated calculation with the step AT , = 0.438e- e give the following values
of the forecast of speed, corrected solution and local error:

v¥ = 0.08505

v{ = 0.08509

|0.08505 — 0.08509|
Ip: =| 5 | = 0-00002

Ip, <9,

Since the obtained now value the second step can be considered successful
from the point of view of the assigned accuracy of the solution. Now let us supplement the

13



calculated value of the speed of v2=0.08509 m/s with the values of acceleration a2 and of
displacement x2, after using the formulas of connection (1.7):

v, —v; _ 0.08509—0.05913
A, 0.438¢ — 3

a, = =59.21 m/c?

At
x, =x; +v,At, +a, 22 =2.96e—5 + 0.05913[0.438¢—3 +

(0.438¢ —3)*
+59.21°—————=6.12¢ -5 m

Up to the present moment we obtained numerical solution for two points of the temporary
axis:

0. 0.001 0.001438 t,c
o o @ o
x,=0 X, =296 e-5 u X,=6.12 e-O M
Vo= 0 v =005913 u/c  v5=008509 1/c
a,=59.13 m/c a,=59.21 u/c
Fig. 1.7

Following the given algorithm, it is possible to continue calculation and to obtain the
solution for entire time interval, which interests researcher.

Before summing up the first sums, would be desirable to return to Fig. 1.6. for some
explanations. At the moment of time # -1 we be situated at the point of vi-1. Through it the curve
v passes (?). It is the so-called integral curve for moment of time # -1, i.e., the graph of speed,
which corresponds to the exact solution of equation (1.6) with the initial condition

v =t — Vi1

(1.31)

Since we solve equation (1.6) approximately, actually on each i- m the step of numerical
integration for the time we pass with one integral curve, which satisfies initial condition (1.31),
to another integral curve, which is already the exact solution of equation (1.6) with the initial
condition

v‘t=t,- = Vi

(1.32)

(in Fig. 1.6. integral curve for #=# it is designated by dotted line).

Therefore as the result of numerical solution serve that broken, passing through the totality
of the integral curves, each of which is the exact solution of equation (1.6) with the initial
conditions, determined by numerical solution at the current step (Fig. 1.8).

14
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We sum up the basic moments, essential

from the point of view of the numerical amcIeHHoe
analysis of the example examined. Vipol— petnenue -
. 1
The sequence of our actions was reduced
to the following: Vit -
CEMENCTBO
V1 - NHTErpaJiIbHBIX

1. They formed the differential equation,

KPUBHIX

which describes the behavior of the system: Vi-y ‘
| 1 l l L
L Ui b b
Fig. 1.8
kx4 g BB L w0
X |t g T T

With the formation of equation 2-1 Newton's law, which is been one of the methods of the
recording of the condition of dynamic equilibrium, were used.

2. They represented the obtained equation in the form, that not containing clearly
differential relationships, after writing down the latter separately:

27T

kx+ u v\v\+ma—Qsin?t=0

dx
v=—

dt

dv  d*x
ll=_=_2

dt dt

e. Were replaced the differential linkage between x, v and a with the algebraic equations of
relation, valid for the selected method of integration, after reducing thus the task of obtaining
solving the in the form continuous functions to the task of finding the set of the values of
unknown function at the isolated points of the temporary axis:

.2
kx; + 1 vi‘vi‘+ma,— —QsmTti =0

A¢

8= x e A ta

v, = tal\,

where AT1 - value i- GO of step on the time
Au=t-ti-I,
xi, vi, ai - value x, v and a with r=ti.

15



4. The obtained system they reduced to one equation, after expressing xi, ai through vi:

avi|"i|+ﬁ vty =0

Thus, at each step on the time calculation was reduced to the solution of the nonlinear
algebraic equation of form f(z) =0, where z=vi.

shch. The solution of nonlinear equation was carried out by Newton's method. This is the
iterative numerical method (solution it is obtained approximated, with the predetermined
accuracy, for several passages). For obtaining the solution on each passage it is necessary to
calculate the values of function f (z) and by its derivative df (z)/dz. We determine initial
approximation to the solution, using a formula of explicit forecast.

'. The accuracy of numerical integration for the time was evaluated via the control of the
local error at the step of integration, which depends on a difference in the explicit and implicit
solution. With the unsatisfactory value of local error was repeated the calculation at the current
step with the reduced value of step ATI.

". If local error at the step is stale in the limits of that permitted, then considered step
successful and, using the calculated value of speed vi, were calculated acceleration ai and
displacement xi over the equations of relation, valid for the selected method of integration.

8. The value of sequential step on the time was selected, on the basis of the relationship of
the permissible and actually obtained local error at the current step of integration.

Based on this simple example we wanted to sufficiently designate the canvas of numerical
solution, by which adheres to the algorithm of computational nucleus PRADIS by large smears.
It is natural that the mass of most important questions remained out of the region of examination.
To many of them we will return later, explanations on another better to obtain in the specialized
literature, references on which with each opportunity we will give.

We hope that the given example makes it possible to understand the essence of the
numerical solution of the differential equation of motion of body, formed in accordance with the
design diagram accepted. However, it must be noted, that very formation of differential equation
was conducted “by hand” and some questions in the course of computation were also solved
nonformally (for example, the analytical determination of the form of the function, which is been
derivative df (z)/dz in the algorithm of Newton's method). Therefore we continue the examination
of methods and algorithms PRADIS from the explanation of the principles of the automatic
formation of the system of the differential equations (for the considered example - one equation),
which describe the behavior of the object being investigated.

16



2. Mechanism of the formation of the mathematical
model

Let us return to the examination of system to [ris].1.1.

Let us rewrite again the equation of the equilibrium:

F-+F +F+F' =0

2.1)

Since with the numerical integration we obtain the solution at the isolated points of
temporary axis, for each i- GO of moment of time equation (2.1) can be recorded in the form:

F+E +F+F =0

(2.2)
where
F =-0Qsi 2—"t
© = =0 sin T
=k | (03
F = vy,
F' = ma;

We consider also that for i- GO of moment of time the values xi, vi, ai are connected with
equations (1.7), which in view of their use in our further computations let us reproduce again:
2

&=, e A+ a;

(2.4)

v; =e taly

You will focus attention, that equations (2.3) are differed from analogous expressions (1.3)
in terms of sign. This connected with the fact that in PRADIS with the examination of the
conditions of equilibrium are summarized the efforts, which act from the side of system to the
elements, but not effort from the side of elements as this have accepted we with the selection of
positive direction for the forces in accordance with Fig. 1.3.

It would be possible to obtain the equation of form (1.8) by substitution (2.3) in (2.2), but
we this make will not be, since we should form and analyze mathematical model on the universal
algorithm. We thus, have sufficiently universal equation of the equilibrium of form (2.2), valid
for each i- GO of moment of time. Let us note that the passage from writing of the equation of

17



equilibrium in the form (2.1) to the record in the form (2.2) marked with itself a qualitative
change in the type of equation. If relationship (2.1) is differential equation (since the entering it
dependences for the forces use derived displacements over the time), relationship (2.2) there is a
already simply algebraic nonlinear equation (since the connection between xi, vi, ai is
determined by the algebraic equations (2.4)). But in the form (2.2) it is possible to enter also with

the nonlinear equation, as we enter with equation (1.12), namely: to decide by his method of
Newton.

We have
f9=0 ] os)
where
f()=E+E +E+E

Variable 7z we can designate any of the components xi, vi or ai, since they are
interconnected by relationships (2.4). Let us accept, as before z=vi.

On each iteration, in accordance with formulas (1.14), we should calculate value f (z) and
by its derivative df (z)/dz.

Calculation f'(z) is reduced to the summing up of the instantaneous values of forces with
the instantaneous values xi, vi, ai (i - number of step on time, j - number of iteration according to
Newton). Actually, the computable value f (z) is the error in the fulfillment of conditions of
equilibrium, which by Newtonian iterations must be “driven in” within the permissible limits.

Now let us paint derivative df (z)/dz.

df(z) _ d(E"+E~y +E“+FE”) _dF  dF _dF  dF"
dz dz dz dz dz dz

(2.6)

Acting strictly in the science, each of the derivatives in expression (2.6) we must represent
as the derivative of complex function.

oF  LOE OF
ars _0x, """ 0v, """ 04, " _oF ax, 0 F dv, 0 F da,
dz dz T dx;, dz v, dz 9 a; dz

Since z=vi, then

dFf _dFf _ 0 Ff dx; O F dv, 0 F' da,

i i i i

dz dv, dx;, dv, Jdv, dv, 0 a; dv,

1 1

! (2.7)
It is analogous:
dFy _dF} 0 F dx; +aF,.y dv; +aF,.y da;
dz  dv, dx;, dv, dv, dv, 0 a, dv,
aFy _dF' _ O F dx; O F'dv, 0F da,
dz ~ dv, 9 x, dv, v, dv, 0 a, dv,
(2.7a)
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dF _dF" 0 F"dx, O F'dv, 0 F'da,

dz dv, 0 x;,dv, 0v, dv, 2 a, dv,

1 1 1 1 1

It is utilized the equation of relation (2.4) for obtaining the dependences ai and xi on vi:

Vi mVi
AV
"8

v. +v.
i i—1
X; =Xt
1 r 2

JAYS

We differentiate expressions (2.8) on vi

dx, M
dv, ~ 2
v,
w ]

' (2.9)
da; 1
dv; - A,

Now let us calculate partial derivatives in expressions (2.7), (2.7[a]), using dependences
(2.3):

For the force Of fils]:

(Fifs] it does not depend on the displacement of

i (Fifs] it does not depend on the speed of body) (2.10)

(Fifs] it does not depend on the acceleration of body)

For the force To fifu]:

; (To fi[u] it does not depend on the speed of body)
(2.11)
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(To fi[u] it does not depend on the acceleration of

For the force Of fi/v]:

(Fifv] it does not depend on the displacement of body)

(2.12)

(Fifv] it does not depend on the acceleration of body)

For the force Of fifi]:

v

v
=

(Fifi] it does not depend on the displacement of body)

v

' (Fifi] it does not depend on the speed of body) (2.13)

We substitute the obtained values of particular derivatives of efforts and the values of
coefficients (2.9) in formulas (2.7), (2.7[a]):

IE

dz

OE i

7: 2 | (2.14)
o F

7z =2U ‘v,‘

AF m

dz N
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We summarize the terms of formula (2.6):

o2 f(z) _ ki,
dz 2

m

A4 (2.15)

+2u ‘vi‘+

Comparing result with previously obtained formula (1.19), for which the coefficients are
taken from relationships (1.12), it is possible to establish that they are similar.

Now, having the capability to calculate f'(z) and df (z)/dz, to continue calculation according
to algorithm described earlier does not present labor. However, as spoke one their heroes Of
[tolkiena], “situation at the present moment can be by that requiring some explanations”. After
being torn through the paling of total and particular derivatives, we obtained the same result as
earlier, but patience in the reader these computations for sure fairly of [poubavili]. By what
acquisitions do redeem these labor expenses?

1. Not at all it was necessary to extract differential equation of motion.

2. The expanded form of the nonlinear equation of form (1.12), to solution of which is
reduced the calculation at each step on the time, also proved to be uncalled-for.

e. Functional dependence for the derivative df (z)/dz was not required.

If we attentively examine |B03neHCTBme

our reasonings, then we used the
following information (list of th ,
mathematical model of Tpy>xmHa * { Macca

information, e necessary for the
formation given below we will

further call “enumeration”): % Y3en cTHKOBKI

SJIEMEeHTOB

Fig. 2.1
1. Information about

jointing of the elements of network (Fig. 2.1).

2. Condition of equilibrium of forces, recorded for i- GO of moment of time, and the being
nonlinear algebraic equation relative to xi, vi, ai the form:

7Y =0
‘ ,(2.16)

™M=

k

where 4- number of forces, which are converged in the unit of jointing (quantity of
[stykujushchikhsja] branches of elements).

Equation (2.16) still is called topological, since it is determined by topology, i.e., structure
of connections in the diagram.

e. Expressions, which make it possible to define efforts in each element as the function of
displacement, speed, acceleration and time - (2.3). This the so-called component equations,
which describe the behavior of the separate component (element) of diagram.
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4. Expressions for the particular derivatives of the efforts, which act in the element, on the
displacement, the speed, to acceleration - see dependences (2.10) - (2.14).

shch. Algebraic equations of relation x, v, a for current time - the formula of the method of
integration (2.4).

'. Indication, relative to which of the variables - x, v or a - to conduct the solution of
nonlinear equation, i.e., which is selected as variable z of function f'(z) in formula (2.5).

Of the enumerated information it is sufficient for the realization of the machine algorithms
of the formation of the mathematical model of object.

So that in the reader it would not remain dark places and white spots, we again in more
detail will pass on example already repeatedly dismantled at this document.

The thus, let there be technical system, processes in which require analysis. Design
diagram corresponds [ris].1.1.

System it is necessary to present in the form the totality of the elements,
[stykujushchikhsja] according to the general degrees of freedom (units). A quantity of degrees of
freedom (units) in each element is determined by the variety of element (Fig. 2.2).

There i1s a concept of the model of 1 2
element. User gathers the model of system .—’\/\/\/—C IIpyskuHa
from the models of separate elements as toy in
the children's designer. It (user) it must worry
only the correctness of assembling, remaining 1 2
questions of the formation of mathematical ._]_. Hemmgep
model - headache of the developers of
software. Having before itself the design 1
diagram (Fig. 1.1) and exarticulating from it @ gggce;maﬂ
elements (Fig. 2.2), user finds the models of
the equivalent components in the library of the 1 2
models of the elements of program set and ot —>0 gﬁ%%euOTOHEHHaH
describes the structure of the diagram being (mpuKknambIBaeTCs
investigated. MEeXXI y OBYMs
TOUKaMM)
The description of structure consists in Fig. 2.2

the connection of elements according to the

general degrees of freedom and the indication of the fixed units. For the completeness of
picture let us give the piece of the text of the description of structure in the input language
PRADIS:

I FRAGMENT: Example
# BASE: 1

# STRUCTURE:

[Pruzhina]' K (1 2; Stiffness coefficient)

Nonlinear damper 'MUNL (1 2; Coefficient of viscosity)
Mass 'M (2; Mass of body)

Action 'FSIN (2 1; Q, T, initial phase)
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By the preparation for the given description user reported to program set PRADIS entire
necessary information on jointing of the elements of the network (see the point of 1
enumerations of the necessary for information for the formation mathematical model of object).
User, in the first place, selected the models of the elements from the library of models - this of
model K, MUNL, M, FSIN. In the second place, connected they properly. after applying action
to the mass in unit 2, to which it also joined the ends of spring and damper. Finally, described
unit 1 as fixed, after fastening the thus free ends of spring and damper.

Let us examine now those actions of the programs, which make it possible as a whole to
present the mechanism of the work of computational algorithm.

In the process of working the description of the structure of model is determined the
dimensionality of system of equations, i.e., a quantity of units, in which must be satisfied the
conditions of equilibrium. In the example in question two units, one of which is fixed. At the
stage of the formation of mathematical model the structure of data will be prepared on both
units; however, in the stage of calculation the equation, which corresponds to the fixed unit, is
excluded from the examination, and all kinematic characteristics of the fixed unit (displacement,
speed, acceleration) it is established in zero.

The stage of numerical integration is the sequence of the steps on the time, each of which is
reduced to the solution of the nonlinear equation of the equilibrium of form (2.16). The
information, given above in the points of 3-6 enumerations, is necessary for solving this
equation.

Now time itself to focus attention on the model of elements and to explain, which their role
in the computational algorithm. Input information for any model of element are:

- the constant list of the parameters of the model of element;

- the instantaneous values of displacements, speeds and accelerations of those units, with
which this element is connected.

The model of element is obligated for current time to calculate according to these data:

1) the efforts, which act from the side of system to the elements, i.e., the vector of the
efforts of the element (see the point e of enumeration);

2) the partial derivatives of the computable efforts for displacements, speeds and
accelerations of the units of element, i.e., the so-called Jacobi matrix (jacobian) the element (see
the point of 4 enumerations).

If element has N of degrees of freedom, then the length of the vector of the efforts of
element also /V, and the jacobian of element has a length NV * NV * e.

How this does appear? For example, the
developer of the binodal model of one-dimensional
dimensionless inertia-free ideally elastic spring,
which we is utilized in our example,
it realized the following dependences for the efforts
and the jacobian of element (Fig. 2.3):

k= k(xl _xz)

Fig. 2.3
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o
I

k(xz_xl)

2.17)

J K 0K
dx =k dx =k

S N EACIN AT
Ik __ LA
dx, k ﬁxz_k
OR_OFK _0FK_0F_,
vy, dv, Ov, 0w, (2.19)
0 F _O0F _51’2_5172_0
a, da, 0Oa, O a, (2.20)

In accordance with the given dependences, for any moment of time the model of element in
terms of tN instantaneous values of displacements, speeds and accelerations (although for the
element in question are important only the displacements) e transmitted into it calculates the
values of the efforts, which act on the ends of spring, and the value of particular derivatives of
efforts for displacements, speeds and accelerations of both units. The vector of efforts consists
their 2 elements, jacobian - of 12.

Since in the design diagram of object in question unit 1 of spring is fixed, in this specific
case from the entire information, computed by model and transferred “upward”, will be claimed
only that part, which is connected with the loose second unit:

P =k(x2 xl) (221)
K

=k
0% (2.22)
oK _O4F _,
ﬂvz _ﬂaz -

This information makes it possible to consider the contribution of spring during the
solution of the nonlinear equation of form (2.5) on the algorithm, presented with the conclusion
of relationships (2.6) - (2.15). The contribution of remaining elements (damper, mass, external
action) is considered analogously.

In order to define concretely the aforesaid, let us continue the previously integration of a
example initiated, after making sequential 3- 1 step on the time. In this case we will use the
formal algorithm, which is been based on the sequence of calculations according to formulas
(2.5)-(2.15).

Let us recall that according to the results is 2nd GO of step on the time (with £2=1.438¢-3)
we obtained the following values of unknowns:
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X,=612e=5n

v, = 0.08509 m / ¢

a,=59.21 m/c’

The value of step was equal At2=0.438 e-3, th value of local error e obtained at the step
composed Ip2=0.000018.

The recommended value of At3 for the following step we determine from formula (1.30)
taking into account of ¢=0.8 and 61 = 0.001:

Further we act according to the diagram, represented in the figures of 2.4[a]-2.4[v]. from
Fig. of 2.4.[a] it follows that before i- m with step on the time must be known the values # -1, xi-
1, vi-1, ai-1, Ati. 1t is possible to ascertain that before beginning 3- GO of step we actually have
available information about the values £2, x2, v2, a2, At3.

The details of the algorithm of the fulfillment of separate step let us get from Fig. of
2.4.[b].

9 x;/0 z

1. We determine the values of the reduction coefficients of jacobian -
av; /ﬂ z a a; /a Z

(see formulas (2.7), (2.7[a])), that depend on the value of step. Since
during calculations at the first two steps for the basic variable we already accepted speed (i.e.,
z=vi), summing up of jacobian is conducted through formulas (2.7), (2.7[a]), for which the
reduction coefficients are calculated from dependences (2.9):

dxy _ Aty _2.63e=3 _ .. .
v, 2 2 ¢
dv

3.1
dv,
day _ 1 _ 1 _ .00,
dvy, Dty 2.63e-3

Let us recall that relationships (2.9) are determined by the formulas of the method of
integration (2.4).

2.Calculate the initial approximation to the solution by the formula of explicit forecast
(1.28):

vg =v, +a,Ar; = 0.08509 + 59.21[R2.63¢ — 3 = 0.24081

You will focus attention, that as the initial approximation must be calculated not only the
value of vi0, but also value of xi0, ai0), necessary for the calculation in the models of elements.
Therefore:

ay =a,=59.21

A2
x? =x, +v,A1; +a, 23 =6.12¢—5 + 0.085092.63¢—3 +
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(2.63¢—-3)2
+59.21°57" " =46.5¢ = 5

e. After establishing the counter of iterations by equal to 1, is realized the sequence of
actions on 1- 1 iteration of Newton (see Fig 2.4[v]).

4. Turning to the models of elements. Calculation of the vector of forces and jacobian of
each element in terms of the instantaneous values of x30, v30, a30.

At the present moment let us limit to data analysis only on the loose unit:
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Fig. of 2.4[a]
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Fig. of 2.4[b]
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j—1 mTepamma MeToma /’/:l_xg' R I
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Pacuer f(z) m df(z)/dz
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gi=gHs 7
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PacueT mo monydeHHOMY SHAYEHHD
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Fig. of 2.4]v]

F’ = kx =2000046.5¢ —5=9.3
OF 4 =20000
o x
oF _IF _,
v da
Damper:
F° = 1 viv|=10000D.24081C10.24081| = 58.0
IF_
dx
D;Ii =2y |v/=201000000.24081| = 481.6
IF
da
Mass point:

F' =ma =0.1059.21=5.9

3F"_6F“_0
2 x v

a F"

2 a—m—O.l

Applicable force:

27T
F° =0 sinTt = —1000 sin

27T
0.277

(1.438¢—3 +2.63¢—3) =—40.6

dx Ov 8 a

OF 0F _9F _,

shch. We summarize the forces, calculated in the models of elements and which are

converged in the loose unit,
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ZF= F' 4+ F* + F'+ F* =-40.6+9.3+58.0+5.9=32.6

The obtained sum is the value of function f (z) on the current iteration (see expression

(2.5)).

Let us calculate now df (z)/dz, using relationships (2.6), (2.7), (2.7[a]):

df(z) _dF; | dF} L AF; | dF!
dz  dz dz dz dz

c

dz =001.31e—3+ 0001 + 0[B80.2=0

dF”
= 2000001.31¢ — 3+ 00X + 0[B80.2 = 26.2
<

dF*
— = 001.31¢—3+481.601 + 0[B80.2 = 481.6
<
a F"
5 . = 00.31e—3+ 000 +0.10880.2 = 38.0
d
% =0+26.2+481.6+ 38.0 = 545.8

6.[Opredeljaem] the increase :

V_ S(=%) 326 _

= = =—0.05973
Az f(z%) 545.8

". We calculate sequential approximation to the solution

7' =7+ Az" =0.24081-0.05973 = 0.18108

8. In terms of the obtained value I:Iwe refine the instantaneous values of x31, v31, a3l,
using formulas (2.81):

vy =z =0.18108
. _vi—v, _ 0.18108 - 0.08509 36.5
a> = = = .
37 Ary 2.63¢—3
. v,+va 0.08509 + 0.18108
X3 =x2+TAt3= 6.12¢—5+ > [R.63¢—3=41.1e—5

Calculations on the first iteration of Newton are finished.
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9. We check the conditions of the completion of Newtonian iterations. Let us recall that
earlier we accepted the following values of the permissible errors for checking conditions (1.15):

3.,=0.001

3 ,=0.1

On the basis of these values, we conclude that

VEVELR

acl|>s,

Thus, Newtonian iterations at the current step on the time must be continued.

10. , before passing to the following iteration, we check, is not exhausted a maximum
quantity of the iterations:

j =1 <of jmax = shch
11. We increase the counter of the number of the iterations:
j=j+1=1+1=2

12. We check the sequence of actions in Fig. of 2.4[v] for the second iteration of Newton's
method. These actions will lead us to the following solution:

Sf(z')=> F=-3.6

Az? = —0.00858 |

x3 =39.8¢—4
v =0.17250

a? =332

Checking the conditions of the end of iterations will show that the iterations are not yet
finished:

VEVIELY

az’>8,

Checking:
Jj =2 <ofjmax = shch

last obstacles from the way of fulfilling the sequential, third iteration are removed.
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13. The third iteration will prove to be the latter. The following result will be obtained:

rcz?)|=l-0.07 <5,

|az3| = -0.00018 < &5,

x; =39.8¢—4

v; =0.17232

aj =33.2

14. In accordance with the diagram of 2.4[b], after the successful completion of Newtonian
iterations it is necessary to estimate the value of local error at the step of the integration

P _,c
“’3 V3

iR

0.24081 ; 0.17232| _ 0.034

15. We calculate th value of the following step e recommended on the criterion of local
error.

Here should be put one stage direction. The practice of calculations showed that formula
(1.30) was acceptable only in the specific range of the relationships of dVof Ipi, namely - near
one. With significant differences in dlof Ipi from one the recommended with formula (1.30)
value of step is, as a rule, overstated leads to the unjustified loss of steps because of the
noncompliance to the requirements of accuracy in the integration. Of this we will be convinced
even now, since for the selection of the value of the current step used formula (1.30) with the
relationship of ollpi = 0.001/0.000018 = 55.5. As the consequence of this, the made step with
the recommended with formula (1.30) value of the step of At3=2.63e-3 led us to the result, when
the comparison of that obtained (/p3 = 0.034) and maximum permissible (81=0.001) local errors
actually determines the need of repeating the calculations n 3. of m step with the reduced value
of step.

We correct the rule of the selection of step on the criterion of local error. It appears as
follows:

o 3 )

eOAt,—  npu -+ < 025

O lPi ] i

] 1 9,
At =0c0At:4-—— npu —— > 0.25

0 Ip; Ip;

clAt; . |[— npu 0.25<—<7
BV, I,
(2.23)
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Then, continuing the consideration of algorithm from the interrupted place, the
recommended value of step for the repeated calculation n 3. of m step let us determine taking
into account (2.23):

s, _oo001_ .
Ip; 0034
Since oVof Ip3 < 0.25,
Ar . = a0 = 0.802.63¢ —30022L — 0.0610— 3
pex=2C 3 lp3_ . .63¢ 0.032_ Y e c

16. We establish At3= 0.061 * e-3 and we repeat the calculations n 3. of m step, beginning
from point 1.

Repeated calculation with this value of step leads to the following results for moment of
the time of 13=£2+ 13 = 1.499 * e-3:

X3 =6.64de—5m

v, =0.08862 m/c

a,=581m/ ¢

Local error in the limits of standard. Recommended value for the following step of
At[rek]=0.264 * e-3/s].

Calculation at the third step on the time is finished.

Basic, to what it would be desirable to focus attention on the completion of the selection of
a example, this separation of the functions between strictly the program of integration and the
programs of the realization of the models of elements. To program of integration, which works
on the algorithm Fig. of 2.4[a]-2.4[v], generally speaking, nevertheless, what processes to
integrate. Its dependence on the models of elements is reduced only to timely obtaining from
them of the vectors of forces and matrices of jacobians. But this information reflects what
properties of separate elements, the program of integration this concern must not. The models of
elements, in turn, have their level of the independence of information with the completely
outlined responsibilities before “the tops”. I.e., the physical properties of the separate element of
object are reflected in the component equations in the level of the model of element, and the
program of integration works at the level of the equations of the equilibrium of flows, without
concerning, from what relationships the components of these flows are calculated. This
differentiation of functions determines the universality of computational nucleus PRADIS the,
i.e., possibility in principle of calculating any objects, processes in which are subordinated to
equilibrium law of flow variables (equilibrium of forces, electrical and heat fluxes, fluid flow
rates and gas).
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3. Briefly about the angular degrees of freedom,
utilized in the three-dimensional elements PRADIS

It is known that solid body of one angular position into another can be transferred by one
turning around a certain axis, called axis of final rotation (Euler's theorem). Let us designate el,
e2, e 3- the direction cosines of axis of final rotation, Fi - angle of final rotation. Then it is
possible to introduce four kinematic parameters, that describe the angular motion of solid body
[1,2]:

x1 =el * sin (Fi/2),

x2 =e2 * sin (Fi/2), (1)
x3 = e3 * sin (Fi/2),

x4 = cos (Fi/2),

and one equation of relation for these parameters:
x] #x1+x2*x2+x3*x3+x4*x4=1(2)

In contrast to any set of three kinematic parameters (in particular - the Euler angles) the
indicated four parameters they do not degenerate with any position of solid body, (i.e. go to
infinity neither parameters themselves nor speed of their change).

The angular degrees of freedom, accepted in the three-dimensional elements PRADIS, are
expressed as kinematic parameters (1) as follows:

ql =xI1 * Lq,
g2 =x2 * Lq, (e)
q3=x3 *Lq,
g4 =x4 *Lq,

where
Lq=sqrt(ql * ql+q2 * of q2+q3 * of q3+q4 *
q4). “4)

The first three degrees of freedom are external for the models of elements, the fourth -
internal, hidden before the user. The initial value of the potential variable, corresponding internal
degree of freedom, is set in the models of elements equalequal to 1.

Flow variables for the first three degrees of freedom are moments along the global axes of
the X, Y, Z. the fourth (internal) flow variable it holds in control change in the time of value Lq

(4):
i4 = Mu * d (Lq)/dT, (shch)

where Mu - constant of proportionality, identical for all degrees of freedom of this type and
taken in the models of elements to the equal

Mu = DABSI/of sqrt (MSHEPS). ()
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What operations, from the point of view of user, are correct with the work with three
external angular degrees of freedom of the models of elements? Almost all methods,
characteristic for forward motion, remain valid and in this case.

In particular:

. it is possible to forbid (basing the appropriate units) motion according to the
selected angular degrees of freedom, which is equivalent to the reduction of the
dimensionality of the vector, directed along the axis of final rotation (for example,
with two fixed angular degrees of freedom, point it can revolve only around the
axis, which corresponds to the loose unit);

. connection in the direction of the rotation between the points of abutting members
it is also possible to achieve (if this is necessary) not according to all three degrees
of freedom, but only on those selected.

With which it is necessary to be more careful? In contrast to the flat rotation, the first and
second derivatives of the potential variables (e) will not be angular velocity and angular
acceleration respectively. Therefore the, for example, initial conditions, given by model VN, will
not, in the general case, determine initial angular velocity. It is natural that also [PRVP] of type
the V and A will derive not angular velocity, but instantaneous values of the first and second
derivative of the potential variable. However, the values of angular velocities and accelerations
are accessible from the working vector of some models of elements, in particular J30.
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